Quick Review: Acid Base Disorders

T Fujii, B Phillips

Citation

T Fujii, B Phillips. *Quick Review: Acid Base Disorders*. The Internet Journal of Internal Medicine. 2002 Volume 3 Number 2.

Abstract

Normal blood pH is 7.40 (7.36 - 7.44), which corresponds to a [H+] of 40 nEq/L (44-36). Systemic arterial pH is maintained by complex buffering mechanisms as well as renal and respiratory compensatory responses. This brief article reviews the basics of acid-base disorders.

GENERAL CONCEPTS

The kidneys regulate HCO3⁻ by the following mechanisms:

Reabsorption of filtered HCO3

Formation of titrable acid Excretion of NH4+ in the urine

Acidemia: serum pH < 7.36 Alkalemia: serum pH > 7.44

Acidosis: pathophysiologic processes, which favor development of acidemia Alkalosis: pathophysiologic processes, which favor development of alkalosis

Buffer: A substance, which can absorb or donate H+ ions in order to mitigate changes pH.

$H2CO3^{-}H+ + HCO3^{-}H2O + CO2$

* Remember: [H+] ion concentration and pH are inversely related.

HENDERSON-HASSELBALCH EQUATION:

pH = pK + log (HCO3) pK = 6.1 (PaCO2)

KASSIRER-BLEICH EQUATION:

 $H + = 24 \text{ x PCO2/HCO3}^{-1}$

Reflects how the acidity of blood is determined by the relative availability of acid and alkali, i.e. HCO3⁻, PaCO2. Stresses how H+ ion concentration is determined by the ratio of PCO2/HCO3, rather than the absolute value of either value alone.

Remember: Metabolic Acidosis/Alkalosis = disturbances of

blood bicarbonate Respiratory Acidosis/Alkalosis = disturbances of PaCO2

METABOLIC ACIDOSIS

Anion Gap: Na+ - (Cl⁻ + HCO3⁻) (represents unmeasured anions in plasma, normally 10-12 mmol/L)

Figure 1

Elevated AG	Decreased AG	Normal AG (hyperchloremic)	
Ethylene glycol	Hypercalcemia	Diarrhea	
Lactic acid	Hypermagnesemia	RTA	
Methanol	Hyperkalemia	Acetazolamide	
Paraldehyde	Hypoalbuminemia	Diversions (ureteral)	
ASA	Paraproteinemia	Renal failure	
Renal failure	Lithium toxicity	HCL administration	
Ketoacidosis			

COMPENSATION:

Winter's formula: $PaCO2 = 1.5 \times HCO3^{-} + 8 (+/-2)$ (PaCO2 = last 2 digits of pH - chronic metabolic acidosis)

TREATMENT:

Should be directed at the underlying cause Bicarbonate therapy can be considered with severe acidosis with physiologic compromise:

Bicarbonate deficit (mEq) = LBW x 0.5 x (Desired HCO3⁻ – actual HCO3⁻)

OSMOLAL GAP:

Measured OSM - Calculated OSM

CALCULATED OSMOLALITY:

Elevated OG (> 10 mOsm/L):

Methanol Ethylene glycol Paraldehyde ETOH ketoacidosis Isopropyl alcohol Mannitol

METABOLIC ALKALOSIS

Figure 2

Cl ⁻ responsive (Uc1 < 20)	CI resistant (Ucl > 30)
GI: NG suction	Primary mineralocorticoid excess
Vomiting/diarrhea	Primary aldosteronism
Laxative abuse	Cushing's syndrome
Villous adenoma	Licorice
Renal: Diuretics	Alkali load:
Post hypercapnea	Citrate (transfusions)
Refeeding alkalosis	Acetate (TPN)
Cystic fibrosis (sweat losses)	Bartter's syndrome
	Severe hypokalemia/-magnesemia

COMPENSATION:

 $PaCO2 = 0.9 \text{ x HCO3}^{-} + 9$

TREATMENT:

Acetazolamide (Diamox): 250 -375 mg po qd-bid HCl infusion: 0.1-0.2 N @ < 0.2 mEq/hour via central line (=100-200 mEq H+/L)

HCL (mmol) = (LBW x 0.5) x Actual HCO3- desired HCO3) Hemodialysis: severe alkalosis with cardiac/renal dysfunction

RESPIRATORY ACIDOSIS

CNS:

Sedatives, morphine, anesthetics Trauma, Stroke Infection

NM DISORDERS:

Myopathies (MD, K+ depletion) Neuropathies (GB, polio)

ACUTE-CHRONIC LUNG DISEASE

COPD PNA, pulmonary edema

ARDS

Acute obstruction (aspiration, tumor, spasm) Obesity Pneumothorax Pleural effusion Kyphoscoliosis Scleroderma Crush injury Mechanical ventilation Cardiopulmonary arrest

COMPENSATION:

Acute: HCO3⁻ increases by 1 mmol/L for each 10 mm Hg increase in PaCO2 Chronic: HCO3⁻ increases by 4 mmol/L for each 10 mm Hg increase in PaCO2

RESPIRATORY ALKALOSIS

- Anxiety, Pain
- CNS Disorders (CVA, tumor, infection)
- Lung Disease:
 - Restrictive disorders
 - Pulmonary embolus
 - PNA
- Sepsis, fever
- Hyperthryoidism
- Hypoxia
- Hepatic insufficiency
- Pregnancy
- Salicylates, Catecholamines
- Mechanical ventilation

COMPENSATION:

Acute: HCO3⁻ decreases by 2 mmol/L for each 10 mm Hg decrease in PaCO2 Chronic: HCO3⁻ decreases by 5-7 mmol/L for each 10 mm Hg decrease in PaCO2

DELTA GAP:

Identifies triple acid base disorders

Figure 3

SUMMARY OF ACID BASE COMPENSATORY RESPONSES

Figure 4

Primary disorder	Prin	nary	Expected	Response
Metabolic Acidosis	↓ HCO3-	↓ PaCO2	PCO2 = 1.5 x HCO3 + 8 (+/-2)	
			PaCO2 = last 2 digits of pH	
			PaCO2↓1.25m HCO3	m Hg ~ 1 mmo $M_{\rm L}\downarrow$
Metabolic Alkalosis	↑HCO3- ↑PaCO2		PaCO2 = 0.9 x HCO3 + 9	
			PaCO2 = HCO3	3+15
			PaCO2 ↑6 mm HCO3	Hg ~ 10 mmol/L ↑
Respiratory Acidosis	↑PaCO2	↓HCO3-	Acute:	
			HCO3 ↑ 1 mmo PaCO2	VL ~ 10 mm Hg↑
			Chronic:	
			HCO3 ↑ 4 mmo PaCO2	VL ~ 10 mm Hg↑
Respiratory Alkalosis	↓ PaCO2	↑HCO3-	Acute:	
			HCO3 ⁻ ↓ 2 mm PaCO2	ol/L ∼10 mm Hg↓
			Chronic:	
			HCO3 ⁻ ↓5 mm PaCO2	ol/L ∼10 mm Hg↓
D - (

References

Author Information

Tisha K. Fujii, DO Dept. of Trauma & Critical Care , Boston University School of Medicine , Boston Medical Center

Bradley J. Phillips, MD

Dept. of Trauma & Critical Care , Boston University School of Medicine , Boston Medical Center