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Abstract

Introduction: Current methods of fracture care use various adjuncts to decrease time of fracture union, improve fracture healing,
and enhance functional recovery. Electrical stimulation (ES), one of such modalities, has shown positive results in management
of both fracture and soft tissue injuries. Material & MethodsA search of PubMed, Medline, CINAHL, and Embase databases was
performed using the following keywords ‘Electrical stimulation’ and ‘fracture healing’. 30 studies detailing the use of ES in
fracture and soft tissue healing were identified, and their bibliographies thoroughly reviewed to identify further related articles.
This review identified and summarized 30 studies which demonstrated the use of ES in fracture healing.In this review,
preclinical, animal and human studies were separately reviewed to thoroughly understand the evolving role of ES in fracture
healing process. This review also examines studies on signal transduction at the membrane level and on stimulation of growth
factor synthesis.Exclusion Criteria: Studies not in English language, review articles, case reports, letter to editors and results
published as abstracts only were excluded from this study. Conclusions: Currently most fractures affected by delayed union and
non-union are treated with surgical fixation with or without bone graft. ES is an alternative, less invasive form of treatment which
has shown great potential in management of these complicated fractures. Various human randomised clinical and animal
studies have shown ES to improve fracture healing time. The complexity of the mechanisms by which ES produces its effect has
also been studied by in-vitro studies. In the future, ES will play a significant role in the management of large scale bone
defects/fractures.

INTRODUCTION

Based on the fact that bone tissue manifests electric
potentials both in normal and pathological states 1, electrical

stimulation has been employed to induce osteogenesis in
clinical studies since 1812, when a successful treatment of
the tibial nonunion with direct current was documented.2

Especially after the discovery of electromechanical
properties of bone in the 1950s 3 the development of this

treatment method as an adjunct to osseous healing was
accelerated both in theoretical and experimental ways. Since
then, three major forms of electrical stimulation techniques
have been devised for clinical use: (a) direct current (DC)
using electrodes implanted in defect site; (b) capacitively
coupled (CC)electric field using skin electrodes placed about
the bone site to be stimulated; and (c) inductively coupled
electromagnetic field (IEMF)using time-varying magnetic
field.4

Since its inception in the early 80’s, electrical stimulation
has gone a long way in fracture care, however its global
usage is still limited to few centers.

This review, explores the historical development of ES, the

understanding of the electrical properties of bone, mode of
action of ES, available evidence and studies on the role of
ES in fracture healing.

MATERIAL &METHODS

A search of PubMed, Medline, CINAHL, and Embase
databases was performed using the following keywords
‘Electrical stimulation’ and ‘fracture healing’. Studies
detailing the use of ES in fracture and soft tissue healing
were identified, and their bibliographies thoroughly
reviewed to identify further related articles. This review
identified and summarized 30 studies which demonstrated
the use of ES in fracture healing.

In this review, preclinical, animal and human studies were
separately reviewed to thoroughly understand the evolving
role of ES in fracture healing process. This review also
examines studies on signal transduction at the membrane
level and on stimulation of growth factor synthesis.

Exclusion Criteria: Studies not in English language, review
articles, case reports, letter to editors and results published as
abstracts only were excluded from this study.
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HISTORY OF ELECTRICAL STIMULATION ON
BONE

Nonunions and delayed unions can be the most frustrating
and unforeseen complications of foot surgery and fracture
management. Understanding the principles of bone healing
and the use of proper internal fixation techniques can
considerably assist in managing this difficult complication.
The role of electricity as an aid in bone healing has been
realized since 1812, when a shock of electrical fluid was
used to treat a tibial non-union7. Later Boyer8, Duchene, 9

Garratt, 10 Lente, 11 and Mott12 all used various forms of

electrical stimulation as augmentation in bony repair. An
understanding of the concept was not fully developed and
illustrated until 1953, when Yasuada, 1314 described

piezoelectric properties of bone in detail. Piezoelectricity,
simply stated, is a charge that is generated whenever stress is
applied to a material (living or dead), in this case, bone.1415

The positive effects of electricity on collagen and bone
healing have been studied in detail by Fukada and
Yasuda.1617 This research on electrical potentials show that

bone under compression is negatively charged and produces
bone. Bone under tension produces a positive charge and
causes bone resorption. Becker and Basset 18 stated that

electrical potentials could not be piezoelectric alone because
the electrically charged bone is not seen as an immediate
response but is delayed. This indicated that the potential
must be relying on cellular or ionic response to produce a
charge. It was determined that a charge generated by living
bone is different than that produced by dead bone. In 1964,
Basset et al19 reported that bone is most electronegative in

areas of growth, such as fractures and epiphyseal plates. In
these bioelectric properties he found that bone is most
electronegative at the cathode end of an electrical current.
Jahn20 concluded in 1968 that live tissues have a secondary

source of electricity from the migration of inorganic
materials within bone. He further stated that calcium and
phosphate attract to the cathode and sodium and chloride
ions migrate to the anode side. In 1971, Friedenberg,21

capitalized on this concept by applying a direct current to a
non-union of a medical malleolar fracture. In 1981,
Brighton22 undertook the first multicenter study on the use of

direct current in the treatment of nonunions. In his study of
178 nonunions, 149 (83%) achieved bony union with use of
direct electrical stimulation.22 since that time, numerous

modifications of electrical stimulation have been used to
assist in bone healing. Direct current, indirect current, and
pulsing magnetic fields are the three most studied modalities
in electrical stimulation.23242526

ELECTRICAL STIMULATION OF BONE

Electrical stimulators have evolved with indications for use
in a variety of pathological bone states. To date, bone
stimulators have been used to augment open reduction with
internal and external fixation.13 Osteogenicity of bone grafts

have been assisted by the use of electrical stimulation.27

Additionally, electrical stimulation has shown to be effective
in treating infected nonunions.28 Bone stimulators also assist

in healing failed arthrodeses.29 More recently, the use of

bone stimulators have shown promise in the treatment of
disuse osteoporosis.30 Bone stimulation has come of age in

the treatment of neuropathic arthropathy when conventional
therapy has failed. Bone stimulation has also been shown to
be effective in the treatment of osteonecrosis.313233

Bone stimulators have been classified into three basic
categories: (1) invasive, (2) semi-invasive, and (3)
noninvasive.34 Bone stimulators function by electromagnetic

stimulation, continuous and pulsed direct current, and
capacitative coupling of electrical fields.35

INVASIVE BONE DEVICES

Invasive bone stimulators are implantable devices that
provide direct current by using a generator that is implanted
into the fasia of the lower leg. The cathode, which delivers
energy to the bone, is placed directly into the nonunion
defect. A micro connector attaches the cathode to the
generator through a subcutaneous tunnel. This type of
stimulator requires cast immobilization and management
with nonweightbearing or weight bearing as the clinician
deems necessary. Invasive devices can be used concurrently
with bone grafts and can provide a synergistic effect of bone
growth.353613 These devices can also be used in the presence

of active infection, although this is generally discouraged.
Complications include infection, tissue reaction, and
superficial soft tissue discomfort caused by protrusion of the
device. Implantable devices pose other threats, such as lead
breakage, limited battery life, potential battery leakage, and
battery malfunction. Therefore, because of the effectiveness
and availability of other noninvasive modalities, the use of
invasive bone stimulation has fallen out of favour.

SEMI-INVASIVE DEVICES

The semi-invasive bone stimulation technique involves a
direct current applied to a non-union through a Teflon coated
stainless cathode that is inserted percutaneously into the site
of the non-union. The cathode must be anchored to bone or it
may dislodge. Up to four electrodes can be placed at the site,
depending on the pertinent anatomy and the size of the bone
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defect.34 The self-adherent anode is placed anywhere on the

surface of the skin and is attached to a power pack that is
embedded in an applied cast. A nonweightbearing cast must
be worn at all times to prevent motion, which can cause the
cathode to break or dislodge from the non-union site.

Certain benefits and disadvantages exist to this technique of
bone stimulation. Its benefits is that it requires minimal
surgical dissection because the cathode is placed
percutaneously and it uses a direct current, which can
average 20 microamperes per cathode.34 Disadvantages

include skin irritation caused by the self-adherent anode pad
which must be changed every other day by the patient.

NON-INVASIVE DEVICES

Non-invasive bone stimulators are of two general types: (1)
capacitative and (2) inductive coupling. Capacitative
stimulators consist of a unit with a power source (usually a
9-volt battery) and two electrode disks. The disks are
attached directly to the skin on each of the non-union and a
bivalved cast is applied in order to allow access to the
electrodes.34 The stimulator with its power source can be

incorporated into the cast or attached to the cast with either a
removable Velcro strap or a clip. The unit is then connected
to the electrodes. Capacitative stimulators function to
produce an internal electrical field at a frequency of 60
kilohertz (KHz). In this way, they do not require a high-
voltage power source.37 The ideal operating current level is

between 5 and 10 milliamperes. Most units require between
12 and 20 weeks of use, 24 hours a day, to achieve healing.
The advantages to the capacitative variety of bone stimulator
are numerous. There is no pain or surgery involved with
their application. Many have alarms incorporated into them
that sound if there is inadequate electrode-to-skin contact or
if the battery is not providing an acceptable current level.
Also, a number of insurance companies reimburse for their
use with nonunions because several studies point out their
efficacy in this situation.3839 In addition, they may be used

conveniently by patient at home. Finally, in most cases the
patient is allowed to bear weight on the casted extremity,
unless excessive motion is present. There are a few
disadvantages to the use of capacitative stimulators. This
includes skin irritation from the electrode disc, constant
monitoring to ensure an adequate battery level, and the
requirement that the patient remain complaint throughout the
relatively long regimen of treatment.

The second type of non-invasive bone stimulation is
inductive coupling. It uses pulsed electromagnetic fields

(PEMFs) to produce an inductive coupled electromagnetic
field at the site of non-union. Bone induction is stimulated
through the PEMF influencing fibro cartilage to initiate
calcification.37 This system consists of two external coils that

are placed parallel to each over the non-union site. As the
current begins to flow through the coils, electromagnetic
fields are produced. These fields expand outward at right
angle from the coil bases and bone is thereby penetrated.24

The advantage of inductive coupling mirrors those of
capacitive coupling. In addition, many inductive coupling
devices include an internal memory that records the
frequency and duration of patient use, thereby monitoring
patient compliance.37 A disadvantage to inductive coupling is

that the use of internal plate fixation could shield the fracture
gap from the PEMF-generated field. In addition, it may also
be a disadvantage because the patient may remove the unit at
their discretion and interrupt the treatment.

The future of non invasive bone stimulators appears
promising. Advantages, such as ease of use, lack of
complications, and high healing rates, far outweigh potential
disadvantages and make these devices valuable tools for the
treatment of non-union.

MODE OF ACTION OF ELECTRICAL
STIMULATION

ES has been shown to affect bone healing both by increasing
growth factors and modulating cell membrane.

A) Increased expression of growth factors: ES enhances
several growth factor release at fracture site. (Table 1)
Various growth factors have been implicated in the positive
effect of ES
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Figure 1

Table 1: Regulation of growth factors by ES.

Electrical stimulation has been shown to up regulate
transforming growth factor beta (TGF-β) mRNA, BMP,
PGE2,

ES upregulated TGF-β1 protein synthesis and mRNA
expression coincident with increases in extra-cellular matrix
protein synthesis and gene expression in an in vivo model of
endochondral bone formation.4245 Regulation of protein

synthesis occurred in a dose-dependent manner in terms of
both amplitude and duration of exposure. In response to ES,
TGF-β1 mRNA levels increased 68%, the active protein 25%
and number of immunopositive cells 119% compared with
control tissues.42 ES treatment enhances chondrogenesis,

endochondral calcification, and the normal physiologic
expression pattern of TGF-β145

Enhancement of growth factor synthesis in response to
Electrical stimulation demonstrated an increase in insulin-
like growth factor II (IGF-II) mRNA and protein and
suggested that IGF-II may in part mediate proliferation of
osteoblast-like cells.47 These results are similar to those

observed in response to mechanical strain, and the stability
of the signaling pathways suggests that growth factor
synthesis serves to amplify electrical stimulation.48

B) Interaction at the cell membrane: With electric current,
the induced electric fields are considerably weaker than the
levels required to depolarize cell membranes and, therefore,
the biological activity of these fields most likely depends on
amplification mechanisms that occur during transmembrane
coupling. Probable sites of amplification are transmembrane
receptors (Table 2). In fact, it was demonstrated that the
effects of electrical stimulation was mediated at the cell

membrane either by interference with hormone receptor
interactions or by blocking of receptor-adenyl cyclase
coupling.49

The first demonstration of receptor-mediated signal
transduction described the interactions of ES and parathyroid
hormone (PTH) receptors.49 Normally, PTH increases in

cyclic adenosine monophosphate activity in bone cells.
However, in the presence of ES, this effect was abolished.
The field blocked the inhibitory effects on collagen synthesis
by PTH but not by 1, 25 dihydroxy vitamin D3, supporting

the hypothesis that ES acts through membrane receptors.
Further studies suggested that the effects of ES on PTH
signaling were mediated through conformational changes in
the transmembrane portion of the PTH receptor .50

Figure 2

Table 2: Receptor modulation

In chondrocytes, by contrast, ES enhanced the cAMP
response to PTH.51 In an osteoblast culture model, a CC field

decreased the cAMP response to PTH and desensitized
osteoblasts to PTH.52 Studies with human fibroblasts have

demonstrated an increase in calcium translocation and the
number of insulin receptors in response to an electric field.53

These studies suggest that electric fields trigger the opening
of voltage-sensitive calcium channels followed by an
increase in intracellular calcium. Inductively coupled fields
stimulate lymphocyte proliferation by enhancing the use of
IL-2 and the expression of IL-2 receptor.54

These studies demonstrated that electric and electromagnetic
fields can affect ligand binding and alterations in the
distribution and activity of receptor populations, thereby
modulating transmembrane signalling.596061
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The evidence so far

This review will explore the preclinical, animal and human
studies.

PRECLINICAL STUDIES

Numerous in vitro and in vivo studies have shown that
appropriately configured electric energy stimulates the
synthesis of extra-cellular matrix proteins. This increased
synthesis is reflected in healing fractures and nonunion as
enhanced bone repair.

STUDIES

Studies have demonstrated that cells involved in bone
formation, particularly endochondral bone formation can be
stimulated by appropriately configured electric fields at
several phases in their cell cycle. Cell responses depend
upon the predominant activity of the cell population (e.g.,
proliferation in pre-confluent cultures or matrix synthesis in
post-confluent cultures). Osteoprogenitor cells of bone
marrow or fracture callus origin respond to electrical
stimulation by increasing their synthesis of extra-cellular
matrix molecules. Bone marrow cells in diffusion chambers
have been stimulated to synthesize cartilage and undergo
endochondral calcification by demineralized bone matrix or
DC stimulation62 A significantly greater number of

electrically stimulated cultures exhibited chondrogenesis and
calcification than did controls. Fracture callus cells harvested
from healing closed rat tibial fractures significantly
increased thymidine incorporation during proliferation in
response to DC electric stimulation.63

ANIMAL STUDIES

The effects of electrical stimulation have been studied in
several animal models. Studies have examined repair of
bone defects, fresh fractures and osteotomies, and fractures
nonunion (Table 3). Experimental models of bone repair
exhibited enhanced cell proliferation calcification, and gain
of mechanical strength when stimulated with DC fields.6465

CC stimulation has been reported to improve mechanical
strength of experimental fracture repair and healing
osteotomies.6667 Several studies using ES stimulation have

demonstrated increased calcification and enhanced
radiographic and mechanical strength in healing bone.6869

Exposure to ES has shown to enhance callus formation and
mechanical parameters of healing in osteotomies.70

Figure 3

Table 3: Stimulation of osteogenesis in animal long bone
models

The volume of periosteal callus, new bone formation, and
the normalized maximum torque and torional stiffness were
significantly greater at 6 weeks in ES-treated osteotomies
compared with untreated control osteotomies. In a study
focusing on the dosimetry of ES stimulation in experimental
osteotomies, dose was expressed as daily exposure
duration.71 Osteotomies treated with ES for 60 minutes/d

achieved intact torsional strength by 14days after osteotomy,
compared with 21 days for osteotomies treated for 30
minutes/d, and 28days in the untreated control group. Other
dosimetry studies, examining daily exposure over 0.5, 3, or 6
hours per day, with a 6-hour stimulation being most
effective.72

HUMAN STUDIES

The electrical enhancement of human fracture healing
started in 1968 and was inspired by animal experiments in
Japan and America.7677787980 A study done by Torben et al81

showed twenty-eight patients with tibial fractures treated
with osteotaxis with the Hoffmann apparatus were
electrically stimulated through bone screws. Forty-three
other patients with tibial fractures treated with osteotaxis
with the Hoffmann apparatus and no electricity constituted
the control material. X-ray examination was performed
every month. The electrical treatment was terminated when
the fracture had attained a certain degree of stiffness. The
stiffness of the fracture was determined by a mechanical
measuring bridge mounted on the Hoffmann apparatus by
which the fracture was loaded in bending by a spring
balance. The desired degree of stiffness at which the
electrical stimulation was discontinued was equivalent to
clinical stability for each fracture.828384

Statistical analysis revealed 30% acceleration in healing in
the electrically treated group. The stimulated group required
an average of 2.4 months to achieve clinical stability or the



The Role Of Electrical Stimulation In Fracture Healing

6 of 9

desired degree of stiffness the tibia via the Hoffmann
apparatus. The control group required 3.6 months to achieve
the same degree of stiffness. This difference between the
experimental and control groups was highly significant
(p<0.001). Other studies using electrical stimulation with
DC or CC techniques have shown encouraging results in
fresh fractures and osteotomies. (Table 4).

Figure 4

Table 4: Clinical stimulation of osteogenesis

CONCLUSION

Electrical stimulation signal connective tissue cells about the
biophysical demands of their physical environment and the
adequacy of the extracellular matrix to meet these demands.
Muscle, ligament, bone and cartilage all respond to electrical
stimulation and these biophysical agents have been applied
in therapeutic contexts. Many studies have observed that ES
up regulates growth factor mRNA levels and protein
synthesis, enhancing the synthesis of extra-cellular matrix
proteins and accelerating tissue repair. ES produce sustained
increases in growth factor concentrations at local sites of
repair, making them useful for multiple applications in
clinical repair and tissue engineering.

Over the past 15 years, investigations have begun to clarify
how cells respond to biophysical stimuli by means of
transmembrane signaling and gene expression for structural
and signaling proteins. Different cell types and cell cycle
positions, as well as the configuration and dose of electrical
input, may determine which transmembrane signaling
mechanisms are activated.

Several studies have implicated factitious receptor activation
or blockade as key mechanisms. Subsequent studies will
need to address the relationship of receptor interactions to
changes in phenotypic expression of relevant cells,
especially as regards extracellular matrix synthesis, in repair.

Electric and electromagnetic fields regulate extra-cellular
matrix synthesis and stimulate repair of fractures and
nonunions. Studies of electric and electromagnetic fields
suggest they (1) regulate proteoglycan and collagen
synthesis and increase bone formation in models of
endochondral ossification, (2) accelerate bone formation and

repair, (3) increase union rates in fractures previously
refractory to healing, and (4) produce results equivalent to
bone grafts. Electric and electromagnetic fields regulate the
expression of genes in connective tissue cells for extra-
cellular matrix proteins, which results in an increase in
cartilage and bone. They also increase gene expression for
and synthesis of growth factors, which may be an
intermediary mechanism of activity and may amplify field
effects through autocrine and paracrine signaling.
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