The Role Of Electrical Stimulation In Fracture Healing

R Onibere, A Khanna

Citation

R Onibere, A Khanna. *The Role Of Electrical Stimulation In Fracture Healing*. The Internet Journal of Orthopedic Surgery. 2008 Volume 11 Number 2.

Abstract

Introduction: Current methods of fracture care use various adjuncts to decrease time of fracture union, improve fracture healing, and enhance functional recovery. Electrical stimulation (ES), one of such modalities, has shown positive results in management of both fracture and soft tissue injuries. Material & MethodsA search of PubMed, Medline, CINAHL, and Embase databases was performed using the following keywords 'Electrical stimulation' and 'fracture healing'. 30 studies detailing the use of ES in fracture and soft tissue healing were identified, and their bibliographies thoroughly reviewed to identify further related articles. This review identified and summarized 30 studies which demonstrated the use of ES in fracture healing. In this review, preclinical, animal and human studies were separately reviewed to thoroughly understand the evolving role of ES in fracture healing process. This review also examines studies on signal transduction at the membrane level and on stimulation of growth factor synthesis. Exclusion Criteria: Studies not in English language, review articles, case reports, letter to editors and results published as abstracts only were excluded from this study. Conclusions: Currently most fractures affected by delayed union and non-union are treated with surgical fixation with or without bone graft. ES is an alternative, less invasive form of treatment which has shown great potential in management of these complicated fractures. Various human randomised clinical and animal studies have shown ES to improve fracture healing time. The complexity of the mechanisms by which ES produces its effect has also been studied by in-vitro studies. In the future, ES will play a significant role in the management of large scale bone defects/fractures.

INTRODUCTION

Based on the fact that bone tissue manifests electric potentials both in normal and pathological states 1, electrical stimulation has been employed to induce osteogenesis in clinical studies since 1812, when a successful treatment of the tibial nonunion with direct current was documented.2 Especially after the discovery of electromechanical properties of bone in the 1950s 3 the development of this treatment method as an adjunct to osseous healing was accelerated both in theoretical and experimental ways. Since then, three major forms of electrical stimulation techniques have been devised for clinical use: (a) direct current (DC) using electrodes implanted in defect site; (b) capacitively coupled (CC)electric field using skin electrodes placed about the bone site to be stimulated; and (c) inductively coupled electromagnetic field (IEMF)using time-varying magnetic field.4

Since its inception in the early 80's, electrical stimulation has gone a long way in fracture care, however its global usage is still limited to few centers.

This review, explores the historical development of ES, the

understanding of the electrical properties of bone, mode of action of ES, available evidence and studies on the role of ES in fracture healing.

MATERIAL & METHODS

A search of PubMed, Medline, CINAHL, and Embase databases was performed using the following keywords 'Electrical stimulation' and 'fracture healing'. Studies detailing the use of ES in fracture and soft tissue healing were identified, and their bibliographies thoroughly reviewed to identify further related articles. This review identified and summarized 30 studies which demonstrated the use of ES in fracture healing.

In this review, preclinical, animal and human studies were separately reviewed to thoroughly understand the evolving role of ES in fracture healing process. This review also examines studies on signal transduction at the membrane level and on stimulation of growth factor synthesis.

Exclusion Criteria: Studies not in English language, review articles, case reports, letter to editors and results published as abstracts only were excluded from this study.

HISTORY OF ELECTRICAL STIMULATION ON BONE

Nonunions and delayed unions can be the most frustrating and unforeseen complications of foot surgery and fracture management. Understanding the principles of bone healing and the use of proper internal fixation techniques can considerably assist in managing this difficult complication. The role of electricity as an aid in bone healing has been realized since 1812, when a shock of electrical fluid was used to treat a tibial non-union₇. Later Boyer₈, Duchene, 9 Garratt, 10 Lente, 11 and Mott₁₂ all used various forms of electrical stimulation as augmentation in bony repair. An understanding of the concept was not fully developed and illustrated until 1953, when Yasuada, 1314 described piezoelectric properties of bone in detail. Piezoelectricity, simply stated, is a charge that is generated whenever stress is applied to a material (living or dead), in this case, bone.1415 The positive effects of electricity on collagen and bone healing have been studied in detail by Fukada and Yasuda.1617 This research on electrical potentials show that bone under compression is negatively charged and produces bone. Bone under tension produces a positive charge and causes bone resorption. Becker and Basset 18 stated that electrical potentials could not be piezoelectric alone because the electrically charged bone is not seen as an immediate response but is delayed. This indicated that the potential must be relying on cellular or ionic response to produce a charge. It was determined that a charge generated by living bone is different than that produced by dead bone. In 1964, Basset et al₁₉ reported that bone is most electronegative in areas of growth, such as fractures and epiphyseal plates. In these bioelectric properties he found that bone is most electronegative at the cathode end of an electrical current. Jahn₂₀ concluded in 1968 that live tissues have a secondary source of electricity from the migration of inorganic materials within bone. He further stated that calcium and phosphate attract to the cathode and sodium and chloride ions migrate to the anode side. In 1971, Friedenberg,21 capitalized on this concept by applying a direct current to a non-union of a medical malleolar fracture. In 1981, Brighton₂₂ undertook the first multicenter study on the use of direct current in the treatment of nonunions. In his study of 178 nonunions, 149 (83%) achieved bony union with use of direct electrical stimulation.22 since that time, numerous modifications of electrical stimulation have been used to assist in bone healing. Direct current, indirect current, and pulsing magnetic fields are the three most studied modalities in electrical stimulation.23242526

ELECTRICAL STIMULATION OF BONE

Electrical stimulators have evolved with indications for use in a variety of pathological bone states. To date, bone stimulators have been used to augment open reduction with internal and external fixation.₁₃ Osteogenicity of bone grafts have been assisted by the use of electrical stimulation.₂₇ Additionally, electrical stimulation has shown to be effective in treating infected nonunions.₂₈ Bone stimulators also assist in healing failed arthrodeses.₂₉ More recently, the use of bone stimulators have shown promise in the treatment of disuse osteoporosis.₃₀ Bone stimulation has come of age in the treatment of neuropathic arthropathy when conventional therapy has failed. Bone stimulation has also been shown to be effective in the treatment of osteonecrosis.₃₁₃₂₃₃

Bone stimulators have been classified into three basic categories: (1) invasive, (2) semi-invasive, and (3) noninvasive.₃₄ Bone stimulators function by electromagnetic stimulation, continuous and pulsed direct current, and capacitative coupling of electrical fields.₃₅

INVASIVE BONE DEVICES

Invasive bone stimulators are implantable devices that provide direct current by using a generator that is implanted into the fasia of the lower leg. The cathode, which delivers energy to the bone, is placed directly into the nonunion defect. A micro connector attaches the cathode to the generator through a subcutaneous tunnel. This type of stimulator requires cast immobilization and management with nonweightbearing or weight bearing as the clinician deems necessary. Invasive devices can be used concurrently with bone grafts and can provide a synergistic effect of bone growth.353613 These devices can also be used in the presence of active infection, although this is generally discouraged. Complications include infection, tissue reaction, and superficial soft tissue discomfort caused by protrusion of the device. Implantable devices pose other threats, such as lead breakage, limited battery life, potential battery leakage, and battery malfunction. Therefore, because of the effectiveness and availability of other noninvasive modalities, the use of invasive bone stimulation has fallen out of favour.

SEMI-INVASIVE DEVICES

The semi-invasive bone stimulation technique involves a direct current applied to a non-union through a Teflon coated stainless cathode that is inserted percutaneously into the site of the non-union. The cathode must be anchored to bone or it may dislodge. Up to four electrodes can be placed at the site, depending on the pertinent anatomy and the size of the bone defect.₃₄ The self-adherent anode is placed anywhere on the surface of the skin and is attached to a power pack that is embedded in an applied cast. A nonweightbearing cast must be worn at all times to prevent motion, which can cause the cathode to break or dislodge from the non-union site.

Certain benefits and disadvantages exist to this technique of bone stimulation. Its benefits is that it requires minimal surgical dissection because the cathode is placed percutaneously and it uses a direct current, which can average 20 microamperes per cathode.₃₄ Disadvantages include skin irritation caused by the self-adherent anode pad which must be changed every other day by the patient.

NON-INVASIVE DEVICES

Non-invasive bone stimulators are of two general types: (1) capacitative and (2) inductive coupling. Capacitative stimulators consist of a unit with a power source (usually a 9-volt battery) and two electrode disks. The disks are attached directly to the skin on each of the non-union and a bivalved cast is applied in order to allow access to the electrodes.34 The stimulator with its power source can be incorporated into the cast or attached to the cast with either a removable Velcro strap or a clip. The unit is then connected to the electrodes. Capacitative stimulators function to produce an internal electrical field at a frequency of 60 kilohertz (KHz). In this way, they do not require a highvoltage power source.37 The ideal operating current level is between 5 and 10 milliamperes. Most units require between 12 and 20 weeks of use, 24 hours a day, to achieve healing. The advantages to the capacitative variety of bone stimulator are numerous. There is no pain or surgery involved with their application. Many have alarms incorporated into them that sound if there is inadequate electrode-to-skin contact or if the battery is not providing an acceptable current level. Also, a number of insurance companies reimburse for their use with nonunions because several studies point out their efficacy in this situation.3839 In addition, they may be used conveniently by patient at home. Finally, in most cases the patient is allowed to bear weight on the casted extremity, unless excessive motion is present. There are a few disadvantages to the use of capacitative stimulators. This includes skin irritation from the electrode disc, constant monitoring to ensure an adequate battery level, and the requirement that the patient remain complaint throughout the relatively long regimen of treatment.

The second type of non-invasive bone stimulation is inductive coupling. It uses pulsed electromagnetic fields (PEMFs) to produce an inductive coupled electromagnetic field at the site of non-union. Bone induction is stimulated through the PEMF influencing fibro cartilage to initiate calcification.₃₇ This system consists of two external coils that are placed parallel to each over the non-union site. As the current begins to flow through the coils, electromagnetic fields are produced. These fields expand outward at right angle from the coil bases and bone is thereby penetrated.₂₄

The advantage of inductive coupling mirrors those of capacitive coupling. In addition, many inductive coupling devices include an internal memory that records the frequency and duration of patient use, thereby monitoring patient compliance.₃₇ A disadvantage to inductive coupling is that the use of internal plate fixation could shield the fracture gap from the PEMF-generated field. In addition, it may also be a disadvantage because the patient may remove the unit at their discretion and interrupt the treatment.

The future of non invasive bone stimulators appears promising. Advantages, such as ease of use, lack of complications, and high healing rates, far outweigh potential disadvantages and make these devices valuable tools for the treatment of non-union.

MODE OF ACTION OF ELECTRICAL STIMULATION

ES has been shown to affect bone healing both by increasing growth factors and modulating cell membrane.

A) Increased expression of growth factors: ES enhances several growth factor release at fracture site. (Table 1) Various growth factors have been implicated in the positive effect of ES

Figure 1

Table 1: Regulation of growth factors by ES.

Study	Year	Technique	Model	Result
Zhuang et al(38)	1997	сс	MC3T3 osteoblast	↑ proliferation ↑ TGF-β1 Mrna
Bodamyali et al(39)	1998	IC	Osteoblasts	↑proliferation,†BMP-2,-4 mRNA
Nagai and Ota(40)	1994	IC	Osteoblasts	↑ BMP-2,-4Mrna
Yajima et al(41)	1996	IC	Osteoblasts	↑ BMP-4,-5,-7 MRNA
Aaron et al(42)	1999	IC	E.G. vivo (Endochondrial osteoblast)	↑ differentiation,†TGF-β₁ Mrna +protein
Lohmann et al(43)	2000	IC	MG63 osteoblasts	\uparrow differentiation, \uparrow TGF- β_1
Guerkov et al(44)	2001	IC	Human nonunion cells	$\uparrow TGF{-}\beta_1$
Aaron at al(45)	2002	IC	E.O.in vivo	\uparrow differentiation, \uparrow TGF- β_1
Lohmann et al(46)	2003	IC	MLO-Y4 osteocytelike cells	\uparrow TGF- β_1 PGE ₂

Electrical stimulation has been shown to up regulate transforming growth factor beta (TGF-II) mRNA, BMP, PGE2,

ES upregulated TGF-1 protein synthesis and mRNA expression coincident with increases in extra-cellular matrix protein synthesis and gene expression in an in vivo model of endochondral bone formation.₄₂₄₅ Regulation of protein synthesis occurred in a dose-dependent manner in terms of both amplitude and duration of exposure. In response to ES, TGF-1 mRNA levels increased 68%, the active protein 25% and number of immunopositive cells 119% compared with control tissues.₄₂ ES treatment enhances chondrogenesis, endochondral calcification, and the normal physiologic expression pattern of TGF- 1_{45}

Enhancement of growth factor synthesis in response to Electrical stimulation demonstrated an increase in insulinlike growth factor II (IGF-II) mRNA and protein and suggested that IGF-II may in part mediate proliferation of osteoblast-like cells.₄₇ These results are similar to those observed in response to mechanical strain, and the stability of the signaling pathways suggests that growth factor synthesis serves to amplify electrical stimulation.₄₈

B) Interaction at the cell membrane: With electric current, the induced electric fields are considerably weaker than the levels required to depolarize cell membranes and, therefore, the biological activity of these fields most likely depends on amplification mechanisms that occur during transmembrane coupling. Probable sites of amplification are transmembrane receptors (Table 2). In fact, it was demonstrated that the effects of electrical stimulation was mediated at the cell membrane either by interference with hormone receptor interactions or by blocking of receptor-adenyl cyclase coupling.₄₉

The first demonstration of receptor-mediated signal transduction described the interactions of ES and parathyroid hormone (PTH) receptors.₄₉ Normally, PTH increases in cyclic adenosine monophosphate activity in bone cells. However, in the presence of ES, this effect was abolished. The field blocked the inhibitory effects on collagen synthesis by PTH but not by 1, 25 dihydroxy vitamin D₃, supporting the hypothesis that ES acts through membrane receptors. Further studies suggested that the effects of ES on PTH signaling were mediated through conformational changes in the transmembrane portion of the PTH receptor .₅₀

Figure 2

Table 2: Receptor 1	modulation
---------------------	------------

Study	Year	Technique	Model	Receptor
Luben et al(49)	1982	IC	Osteoblasts	PTH
Cain et al(50)	1987	IC	Osteoblasts	PTH
Hiraki et al(51)	1987	IC	Chondrocytes	PTH
Brighton and McCluskey(52)	1988	сс	Osteoblasts	РТН
Bourguignon et al(53)	1989	DC	Fibroblasts	Insulin
Cossarizza et al(54)	1989	IC	lymphocytes	IL-2
Cho et al(55)	1994	AC	fibrosarcoma	Transferrin,LDL
Fitzsimmons et al(56)	1995	IC	TE-85 osteoblasts	IGF-2
Shankar et al(57)	1998	IC	osteoblasts	Calcitonin
Varani et al (58)	2002	IC	neutrophils	Adenosine A _{2A}

In chondrocytes, by contrast, ES enhanced the cAMP response to PTH.₅₁ In an osteoblast culture model, a CC field decreased the cAMP response to PTH and desensitized osteoblasts to PTH.₅₂ Studies with human fibroblasts have demonstrated an increase in calcium translocation and the number of insulin receptors in response to an electric field.₅₃ These studies suggest that electric fields trigger the opening of voltage-sensitive calcium channels followed by an increase in intracellular calcium. Inductively coupled fields stimulate lymphocyte proliferation by enhancing the use of IL-2 and the expression of IL-2 receptor.₅₄

These studies demonstrated that electric and electromagnetic fields can affect ligand binding and alterations in the distribution and activity of receptor populations, thereby modulating transmembrane signalling.₅₉₆₀₆₁

The evidence so far

This review will explore the preclinical, animal and human studies.

PRECLINICAL STUDIES

Numerous in vitro and in vivo studies have shown that appropriately configured electric energy stimulates the synthesis of extra-cellular matrix proteins. This increased synthesis is reflected in healing fractures and nonunion as enhanced bone repair.

STUDIES

Studies have demonstrated that cells involved in bone formation, particularly endochondral bone formation can be stimulated by appropriately configured electric fields at several phases in their cell cycle. Cell responses depend upon the predominant activity of the cell population (e.g., proliferation in pre-confluent cultures or matrix synthesis in post-confluent cultures). Osteoprogenitor cells of bone marrow or fracture callus origin respond to electrical stimulation by increasing their synthesis of extra-cellular matrix molecules. Bone marrow cells in diffusion chambers have been stimulated to synthesize cartilage and undergo endochondral calcification by demineralized bone matrix or DC stimulation₆₂ A significantly greater number of electrically stimulated cultures exhibited chondrogenesis and calcification than did controls. Fracture callus cells harvested from healing closed rat tibial fractures significantly increased thymidine incorporation during proliferation in response to DC electric stimulation.63

ANIMAL STUDIES

The effects of electrical stimulation have been studied in several animal models. Studies have examined repair of bone defects, fresh fractures and osteotomies, and fractures nonunion (Table 3). Experimental models of bone repair exhibited enhanced cell proliferation calcification, and gain of mechanical strength when stimulated with DC fields.₆₄₆₅ CC stimulation has been reported to improve mechanical strength of experimental fracture repair and healing osteotomies.₆₆₆₇ Several studies using ES stimulation have demonstrated increased calcification and enhanced radiographic and mechanical strength in healing bone.₆₈₆₉ Exposure to ES has shown to enhance callus formation and mechanical parameters of healing in osteotomies.₇₀

Figure 3

Table 3: Stimulation of osteogenesis in animal long bone models

Study	Year	Model	Technique	Stimulation
Peterson et al(65)	1982	Rabbit fibula delayed union	DC	Accelerated union
Brighton et al(66)	1985	Rabbit fibula osteotomy	сс	Accelerated union
Bassett et al(68)	1982	Dog radius osteotomy	IC	Accelerated union
Fredericks et al(71)	2000	Rabbit tibia osteotomy	IC	Accelerated union
Fredericks et al(72)	2003	Rabbit tibia osteotomy	IC	Accelerated union
Inoue et al(70)	2002	Dog tibia osteotomy	IC	Accelerated union

The volume of periosteal callus, new bone formation, and the normalized maximum torque and torional stiffness were significantly greater at 6 weeks in ES-treated osteotomies compared with untreated control osteotomies. In a study focusing on the dosimetry of ES stimulation in experimental osteotomies, dose was expressed as daily exposure duration.₇₁ Osteotomies treated with ES for 60 minutes/d achieved intact torsional strength by 14days after osteotomy, compared with 21 days for osteotomies treated for 30 minutes/d, and 28days in the untreated control group. Other dosimetry studies, examining daily exposure over 0.5, 3, or 6 hours per day, with a 6-hour stimulation being most effective.₇₂

HUMAN STUDIES

The electrical enhancement of human fracture healing started in 1968 and was inspired by animal experiments in Japan and America.7677787980 A study done by Torben et al₈₁ showed twenty-eight patients with tibial fractures treated with osteotaxis with the Hoffmann apparatus were electrically stimulated through bone screws. Forty-three other patients with tibial fractures treated with osteotaxis with the Hoffmann apparatus and no electricity constituted the control material. X-ray examination was performed every month. The electrical treatment was terminated when the fracture had attained a certain degree of stiffness. The stiffness of the fracture was determined by a mechanical measuring bridge mounted on the Hoffmann apparatus by which the fracture was loaded in bending by a spring balance. The desired degree of stiffness at which the electrical stimulation was discontinued was equivalent to clinical stability for each fracture.828384

Statistical analysis revealed 30% acceleration in healing in the electrically treated group. The stimulated group required an average of 2.4 months to achieve clinical stability or the desired degree of stiffness the tibia via the Hoffmann apparatus. The control group required 3.6 months to achieve the same degree of stiffness. This difference between the experimental and control groups was highly significant (p<0.001). Other studies using electrical stimulation with DC or CC techniques have shown encouraging results in fresh fractures and osteotomies. (Table 4).

Figure 4

Table 4: Clinical stimulation of osteogenesis

Study	Year	Model	Technique	Result
Borsalino et al(73)	1988	Femoral osteotomy	IC	Accelerated union
Mammi et al(74)	1993	Tibial osteotomy	IC	Accelerated union
Triana et al(75)	1999	Tibial osteotomy	IC	Accelerated union

CONCLUSION

Electrical stimulation signal connective tissue cells about the biophysical demands of their physical environment and the adequacy of the extracellular matrix to meet these demands. Muscle, ligament, bone and cartilage all respond to electrical stimulation and these biophysical agents have been applied in therapeutic contexts. Many studies have observed that ES up regulates growth factor mRNA levels and protein synthesis, enhancing the synthesis of extra-cellular matrix proteins and accelerating tissue repair. ES produce sustained increases in growth factor concentrations at local sites of repair, making them useful for multiple applications in clinical repair and tissue engineering.

Over the past 15 years, investigations have begun to clarify how cells respond to biophysical stimuli by means of transmembrane signaling and gene expression for structural and signaling proteins. Different cell types and cell cycle positions, as well as the configuration and dose of electrical input, may determine which transmembrane signaling mechanisms are activated.

Several studies have implicated factitious receptor activation or blockade as key mechanisms. Subsequent studies will need to address the relationship of receptor interactions to changes in phenotypic expression of relevant cells, especially as regards extracellular matrix synthesis, in repair.

Electric and electromagnetic fields regulate extra-cellular matrix synthesis and stimulate repair of fractures and nonunions. Studies of electric and electromagnetic fields suggest they (1) regulate proteoglycan and collagen synthesis and increase bone formation in models of endochondral ossification, (2) accelerate bone formation and repair, (3) increase union rates in fractures previously refractory to healing, and (4) produce results equivalent to bone grafts. Electric and electromagnetic fields regulate the expression of genes in connective tissue cells for extracellular matrix proteins, which results in an increase in cartilage and bone. They also increase gene expression for and synthesis of growth factors, which may be an intermediary mechanism of activity and may amplify field effects through autocrine and paracrine signaling.

CORRESPONDENCE TO

Mr Anil Khanna MRCS, Master of Surgery (Ortho) DePuy International Implant Research Fellow University Hospital of North Staffordshire Hartshill Road Stoke-on-Trent, ST4 7PA Ph:01782 554637 Mobile:+ 44 7894657349 email: dranilkhanna@yahoo.com

References

1. C.T. Friedenberg and C.T. Brighton, Bioelectric potentials in bone, J Bone Joint Surg Am 48 (1966), pp. 915–923. 2. C.T. Brighton and P.B. Magnusson, Electrically induced osteogenesis. Its clinical use in treating nonunion. In: E. Fukuda, Editor, Bioelectrical Repair and growth, Nisimura, Niigata (1985), pp. 3–19. 3. Fukada and I. Yasuda, On the piezoelectric effect of bone, J Phys SocJpn 12 (1957), pp. 1158–1162. 4. J.T. Ryaby, Clinical effects of electromagnetic and electric fields on fracture healing, Clin Orthop Relat Res 355S (1998), pp. 205–215. 5. Peltier L.F: A brief historical note on the use of electricity in the treatment of fractures. Clin Orthop 161:4-7,1981 6. Boyer A: A treatise in Surgical diseases and the Operations Suited to Them, vol 11 (Stevens AH translation). New York, T and J Swords, 1816, p 387 7. Duchene GB: de L'Electrisation Lacalise et de so application a la Physiologie, a la Pathologie, et a la Therapeutique. Paris, JB. Bailleire, 1855 8. Garratt AC: Electro-physiology and Electro-theraupics. Boston, Tichnor and Fields, 1861, p 657 9. Lente FD: Cases of ununited fractures treated by electricity. N Y J Med 5:317, 1850 10. Mott V: Two cases of ununited fractures successfully treated by ston. Medical and Surgical Register (part 2): 375,182098 11. Weber GG, Cech O: Pseudoarthrosis. New York, Grune and Stratton, 1976, pp 40-44 12. Yasuda I: Peizoelectricity of living bone. J Kyoto Pref Univ Med 53:325, 1953 13. Yasuda I: Fundamental aspects of fracture treatment. J Kyoto Med Assoc 4:395,1953 14. Fukada E, Yasuda I: On the piezoelectric effect of bone. J Phys Soc Jap 12:1158, 1957 15. Fukada E: Piezoelectric properties of organic polymers. Ann NY Acad Sci 238:7,1974 16. Becker RO, Basset CAL: Bioelectrical factors controlling bone structure. In Frost H (ed.): Bone Biodynamics. New York, Little Brown, 1964 17. Basset C, Pawluck RJ, Becker RO: Effects of electrical currents on bone in vivo. Nature 04: 652-654, 1964 18. Jahn TL: A possible mechanism for the effect of

electrical potentials on apatite formation in bone.Clin Orthop 56:261-273,1968

 Friedenberg ZB, Harlow MC, Brighton CT: Healing of a non-union of the medial malleolus by means of direct current: A case report. J Trauma 11:883-884, 1971
 Brighton CT, Block J, Briedenberg ZB: A Multi-centre study of the treatment of non-union with constant direct current. J Bone Joint Surg Am 63:2-13 1981

21. Bassett CA, Mitchell SN, Schink MM: Treatment of therapeutically resistant non-unions with bonegrafts and pulsing electromagnetic fields. J Bone Joint Surg Am 64:1214-1220, 1982

22. Krempen JF, Silver RA: External electromagnetic fields in the treatment of non-union of bones. Orthop Rev 10:33, 1981

23. Paterson DC, Lewis GN, Cass CA: Treatment of delayed union and non-union with implanted direct current stimulation. Clin Orthop 148;117-128, 1982

24. Orthopaedics 7:428-436, 1984

25. Dunn AW, Rusk GA III: Electrical stimulation in the treatment of delayed union and non-union of fractures and osteotomies. South Med J 1530-1534, 1984

26. Becker RO, Spadara JA: Treatment of orthopaedic infections with electrically generated silver ions: A preliminary report. J Bone Joint Surg Am 60:871-881, 1977 27. Basset C: Pulsing electromagnetic field treatment in ununited fractures and failed arthrodesis. J Am Med Assoc 247:623-628, 1982

28. Crees RL, Kan K, Basett CAL: The Effect of pulsing electromagnetic fields on bone metabolism in experimental disuse osteoporosis. Clin Orthop No 173;245-250,1983 29. Aaron F, Lennox D, Bunce G, et al: The conservative treatment of osteonecrosis of the femoral head: A comparison of pulsed electromagnetic fields and core decompression. Trans Bioelectrical Growth Repair Soc 8:24-41, 1988

30. Aaron R, Ciombor D: Treatment of osteonecrosis of the femoral head with pulsed external magnetic fields. Ann NY Acad Sci 435:367-372,1985

31. Sapkass J, Wang G: Experience with pulsed electromagnetic fields in the treatment of avascular necrosis of the femoral head. Trans Bioelectrical Growth Repair Soc 7:91-99, 1987

32. Jacobs A, Seifert A: Augmentation of bone growth by electromagnetic field stimulation. In McGlamry ED, Banks AS, Downey MS (eds): Comprehensive Textbook of Foot Surgery,vol 2.Baltimore,Williams & Wilkins,1987,pp 1783-1791

33. Barker AT: Electromagnetic stimulation of bone healing: The nee for multicenter collaboration. J Med Eng Technol 4:271,1980

34. Connolly JF: Selection, evaluation and indications for electrical stimulation of ununited fractures. Clin Orthop 161:39-53,1981

35. Vanore JV, Jacobs AM: Electrically Induced

Osteogenesis. Podiatry Tracts 5:117-133, 1992

36. Brighton C, Pollack S: Treatment of nounion tibia with capacitively coupled electrical field. J Trauma 24:153-155,1984

37. Paterson D: Treatment of non-union with a constant direct current: A totally implantable system. Orthop Clin North Am 15:47-59,1984

38. Zhuang H, Wang W, Seldes R, et al. Electrical stimulation induces the level of TGF-beta 1 mRNA in osteoblastic cells by a mechanism involving

calcium/calmodulin pathway. Biochem Biophys Res Comm 1997;237:225-9.

39. Bodamyali T, Bhatt B, Hughes F, et al. Pulsed

electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic protein 2 and 4 in rat osteoblasts in vitro. Biophys Biochem Res Comm 1998;250:458-61.

40. Nagai M, Ota M. Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic proteins -2 and -4. J Dent Res 1994;73:1601-5.

41. Yajima A, Ochi M, Hirose Y. Effects of pulsing electromagnetic fields on gene expression of bone morphogenetic proteins in human osteoblastic cell line in vitro. J Bone Min Res 1996;11(Suppl,1):381.

42. Aaron RK, Ciombor DM, Keeping HS. Power frequency fields promote cell differentiation coincident with an increase in transforming TGFI expression.

Bioelectromagnetics 1999;10:453-8.

43. Lohmann CH, Schwartz Z, Liu Y, et al. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 2000;18:637-46.

44. Guerkov HH, Lohmann CH, Liu Y, et al. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop Relat Res 2001;384:265-79.
45. Aaron RK, Wang S, Ciombor DM. Upregulation of basal TGFI 1 levels by EMF coincident with chondrogenesis: implications for skeletal repair and tissue engineering. J Orthop Res 2002;20:233-40.

46. Lohmann CH, Schwartz Z, Liu Y, et al. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells.J Orthop Res 2003;21:326-34.
47. Fitzsimmons RJ, Strong DD, Mohan S, et al. Lowamplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 1992;150:84-9.

48. Fitzsimmons RJ, Ryaby JT, Mohan S, et al. Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 1995:136:3100-0

Endocrinology 1995;136:3100-0. 49. Luben RA, Cain CD,Chen MC-Y, et al. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by lowenergy,low-frequency fields. Proc Natl Acad Sci USA 1982;79:4180-4.

50. Cain CD, Adey WR, Luben RA. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. J Bone Min Res 1987;2:437-41.

51. Hiraki Y, Endo N, Takigawa M, et al. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field. Biochim Acta 1987;931:94-100.

52. Brighton CT, McCluskey W. Response of cultured bone cells to a capacitively coupled electric field: inhibition of cAMP response to parathyroid hormone. J Orthop Res 1988;6:567-71.

53. Bourguignon GJ, Jy W, Bourguignon LY. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. J Cell Physiol 1989;140:379-85.

54. Cossarizza A, Monti D, Bersani F, et al. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Lett 1989;248:141-4.

55. Cho MR, Thatte HS,Lee RC, et al. Induced redistribution of cell surface receptors by alternating current electric fields.FASEB J 1994;8:771-6.

56. Fitzsimmons RG, Ryaby JT, Magee FP,et al. IGF-II receptor number is increased in TE-85 cells by low-amplitude, low frequency electromagnetic field (EMF) exposure.J Bone Min Res 1995;10:812-9.
57. Shankar VS, Simon BJ,Bax CM, et al. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoblasts. J Call Physiol 1998;176:537-66.
58. Varni K, Gessi S, Merighi S, et al. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophilis. Br J Pharma 2002;136:57-66.

59. Bersani F, Maeinelli F, Ognibene A, et al. Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 1997;18:463-9.

60. Chiabrera A, Bianco B, Moggai E,et al. Zeeman-Stark modeling of the Rf EMF interaction with ligand binding. Bioelectromagnetics 2000;21:312-24.

61. Massot O, Grimaldi B, Bailly JM, et al. Magnetic field desensitizes 5-HT(1B) receptor in brain: pharmacological and functional studies. Brain Res 2000;858:143-50.
62. Friendenberg ZB, Brighton CT, Michelson JD, et al. The

effects of demineralized bone matrix and direct current on an "in vivo" culture of bone marrow cells. J Orthop Res 1989;7(1):22-7.

63. Aro H, Eerola E, Aho AJ, et al. Electrostimulation of rat callus cells and human lymphocytes in vitro. J Orthop Res 1984;2:23-31.

64. Connolly JF, Ortiz J, Price RR, et al. The effect of electrical stimulation on the biophysical properties of fracture healing. Ann N Y Acad Sci 1974;238:519-29.65. Petersson C, Holmer N, Johnell O. Electrical stimulation of osteogenesis:studies of the cathode effect on rabbit femur.

Acta Orthop Scand 1982;53:727-32. 66. Brighton CT, Hozack WJ, Brager MD,et al. Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J Orthop Res 1985;3:331-40.

67. Brighton CT, Pollack SR, Windsor RE. Stimulation of fracture healing by a capacitively coupled electric field in the rabbit fibula. Trans Orthop Res Soc 1981;6:93.

68. Bassett CAL, Valdes MG, Hernandez E. Modification of fracture repair with selected pulsing electromagnetic fields. J Bone Joint Surg 1982;64:888-95.

69. Bassett CAL, Choski HR, Hernandez E, et al. The effect

of pulsing electromagnetic fields on cellular calcium and calcification of nonunions. In: Brighton CT,Black J, Pollack S, editors. Electrical properties of bone and cartilage. New York: Grune and Stratton; 1979.p.427-42.

70. Inoue N, Ohnishi I, Chen D, et al. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing ina canine tibial model. J Orthop Res 2002;20:1106-14.

71. Fredericks DC, Nepola JV, Baker JT. Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma 2000;14:93-100.
72. Fredericks DC, Phiel DJ,Baker JT, et al. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop 2003;23:478-83.

73. Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrocahnteric osteotomies. Clin Orthop Relat Res 1988;237:256-63.

74. Mammi GI, Rocchi R, Cadossi R. The electrical stimulation of tibial osteotomies. Double-blind study. Clin Orthop Relat Res 1993;288:246-53.

75. Traina GC,Sollazzo V, Massari L. Electrical stimulation of tibial osteotomies; adouble blind study. In:Bersani F,editr. Electricity and magnetism in biology and medicine. New York: Kluwer Academic/Plenum;1999.p137-8.

76. Bassett, C.A.I., Pawluk, R. J and Becker, R.O: Effect of electrical current on bone in vivo, Nature 204:652, 1964. 77. Friedenberg, Z. B. and Brighton, C.T.:Bioelectric restarticle in bone 1 Bone Joint Sume 48 A: 015 1066

potentials in bone, J.Bone Joint Surg. 48A: 915, 1966 78. Kohanim, M:The effect of direct current on bone, surg. Gynecol. Obstet. 127:97, 1968

79. Lida, H,Ko, S, Miyashita, Y, Sauada, S. Maeda, M, Nagayama,H, Kawai, A. and Kitamura, S :J.Kyoto Prefect. Med Univ. 60:651,1956.

80. Minkin, C. Poulton, B. R. and Hoover, W.H : The effect of direct current on bone,

Clin. Orthop. 57:303, 1968.

81. Torben, Ejsing, Jorgensen :Electrical stimulation of human fracture healing by means of a slow pulsating, asymmetrical direct current

82. Measurement of stability of crural fractures treated with Hoffmann osteotaxis, Acta Orthop. Scand. 43:264, 1972.
83. Measurement of stability of crural fractures treated with Hoffmann osteotaxis, Acta orthop. Scand. 43:280, 1972.
84. The effect of electric current on the healing time of crural fractures, Acta Orthop. Scand 43:421, 1972.

Author Information

Riwo Onibere

Department of Otrhopaedics, University Hospital of North Staffordshire

Anil Khanna

Department of Otrhopaedics, University Hospital of North Staffordshire