Complication Of Venous Cut-Down: Migration Of Catheter That Remained In The Vein M Edis, T Ege, E Duran #### Citation M Edis, T Ege, E Duran. *Complication Of Venous Cut-Down: Migration Of Catheter That Remained In The Vein.* The Internet Journal of Emergency Medicine. 2004 Volume 2 Number 2. #### **Abstract** The patient, who was followed up with a diagnosis of amyotrophic lateral sclerosis (ALS), was inserted a catheter with the approach of cephalic vein cut-down operation on left arm in order to enable parenteral nutrition and medical treatment. After the treatment, while the catheter was being pulled out, it was broken and a large part of it remained in the vessel. On the postero-anterior (PA) x-ray, the catheter was seen and it was taken out of the subclavian vein through venotomy in a surgical operation. The case was examined in accordance with the related literature. #### INTRODUCTION Central venous catheters are commonly used safely for the patients who require nutritional support, hemodynamic moniterazition, temporary transvenous cardiac pace-maker, plazmapharesis or hemodyalisis in intensive care unit (ICU) and in operating room. While they provide the replacement of fluid and blood products in ICU, they are also the common way to supply the patients with total parenteral nutrision therapy. Internal and external juguler vein, subclavian vein, femoral vein, and brakial vein are frequently used for venous cannulation. Seldinger is the tecnique commonly preferred in the placement of central venous catheters. Venous cut-down technique is only possible when the application of percutaneus insertion of the catheters cannot be made. In this study, a rare complication in a patient who underwent central catheterization with venous cut-down tecnique was examined within the lights of findings in the related literature. # **CASE REPORT** 32 years old male patient was brought to the emergency service with a severe complaint of serious dispnea and we detected that the patient had ALS diagnosis twelve years ago, he was bed-dependent and could not swallow for three years. After his hospitalization, central catheterization had been used with the cephalic vein cut-down tecnique on his left arm for the medical therapy. Just before the completion of the treatment of the patient, the catheter had broken off and the large part of it had remained in the venous system of him. As a result, we were required to consultate the patient (Picture 1). Figure 1 Picture 1: A outside part of Cava-fix catheter after it is broken down During his first physical examination, the patient was concious, coopareted, and quadryplegic. He had also taken mechanic ventilator treatment via traceostomy. There was an insertion area of venous cannula with the antecubital cutdown insicion on the left arm With an immediate anteroposterior chest graphy, it was detected that the catheter was lying from antecubital region to proximally into the vein. This area was explored with a different insicion from the midline of the left arm but catheter was not in the sephalic vein. After taking a new chest graphy of the patient in his bed, it was seen that the broken part of the catheter had been located in the axillary vein (Picture 2a and 2b). Figure 2 Picture 2a: A view of the broken Cava-fix catheter on posteroanterior chest radiography **Figure 3**Picture 2b: A view of the broken Cava-fix catheter on posteroanterior chest radiography After that, with the local anesthesia to the left subclavian area, subclavian vein was found with a different insicion and the catheter was found within the subclavian vein when the subclavian vein was turned and hanged. Then transverse venotomy was performed to subclavian vein. The catheter with the surrounding fresh thrombus material was taken out with the help of a clemp from the vein(Picture 3a and 3b). Following that, the venotomy made to subclavian vein was mended by with polypropilen suture and the incision was routinely closed. Figure 4 Picture 3a: Taking out of the catheter with the help of a clamp **Figure 5**Picture 3b: Parts of Cava-fix catheter and cover thrombus surrounding it (inside) #### DISCUSSION Various complications such as thrombus, vasculer trauma, hemopnomothorax, pseudoaneursym, arteriovenous fistula, local and systemic infection are witnessed among the ICU patients who have undertaken central venous catheterizationa common technique applied in the intensive care units- with the aim of parentheral nutrition or fluid replacement. To decrease these complications, this technique should be performed by the experienced individuals in sterile conditions under the local anesthesia. Central venous catheters, most of the time, are inserted by the implementation of Seldinger technique. Internal juguler, external juguler, subclavian, femoral, and brakial veins are the most frequent chosen areas for the insertion of venous cannula. The area chosen for the insertion is dependant to the patient's situation, experience and the preference of the physician. The region of subclavian vein is cannulated more easily in the volume deplacement with a high success rate. High pnoumothotax risk and presence of bleeding are the disadvantages of this area. Internal juguler vein is cannulated with a high success rate just like subclavian vein. The main advantages of the internal juguler vein catherization are the low probability of pnoumothotax and being able to make compression during the time of bleeding. Formerly, when percutaneous insertion applications were so rare, catheters sent surgically through the cephalic and safenous vein had been used in the aim of central catherization. Despite the fact that this technique left its place to percutaneous insertion, some physicians still, though rarely, rely on cut-down technique. Percutaneous central venous insertion is much more preferred technique compared to the venous cut-down tecnique for the fact that it has more successful results, low infection rates and it needs a shorter time-span for its completion. In our case, catheterization had been done to the sephalic vein surgically with the cut-down tecnique. In this technique, it is known that a slight ligation is made with the catheter and the vein by a suture that is sent to proximal after the venotomy and by this way the catheter is made stable. When the catheter usage becomes unnecassary and when it needs to be taken out, it should be taken out carefully and slowly. In our case, as the catheter had been pulled so hard during the taking out process, the catheter had been broken off within the ligaturated area and a large part of it remained in the vein. With the chest diagraphy, it was realised that one edge of the catheter was lying in the mid-part of the arm. Upon that an exploration was made on the old incision area however the catheter was not be able to found it the located area shown on the diagraphy. Then taking a new diagraphy, we detected the location of the catheter. The catheter which is expected to move so fast in lumen had moved too slowly and it remained there by holding on the vessel wall in the subclavian area. When the catheter was taken out from its location, it was seen that the major factor for the situation was the fresh thrombus material surrounding it (Picture 3b). Such complications in relation with the breaking off the catheter in percutanous applications are fairly rare because during this procedure catheter is sutured and ligatured merely on the surface of the skin. Catheter can easily be removed from its place when this suture is taken out. If the catheter is thought to be broken off during its taking out process, the situation should be evaluated by chest graphy, the parts of the catheter and their locations should be identified and the following application should be planned. Meanwhile, it should not be forgotten that the catheter part inside the lumen will move in the same direction of the blood flow in the vein. In our case, we determined the fairly slight movement of the catheter proximally in the vein. In such a case, the catheter was taken out before it reached to pulmonary artery from the embolization and a worse surgical treatment was prevented. As a result, it is very important that insertion of the central venous catheterization should be performed percutanously, histrorically cut-down tecnique should abandoned and more importantly government health officials should be educated more for a better care of catheter. The parts of catheter which have remained in the vein system should also be taken out either by surgical or percutanous attempts. ### **CORRESPONDENCE TO** Mustafa EDIS, MD Trakya University Medical Faculty, Department of Cardio-Vascular Surgery, 22030, Edirne, Turkey Tel: +90284 235 0665 Fax: +90284 236 1513 e mail: drmedis@trakya.edu.tr #### References - 1. Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med 2000;132:391 - 2. Seldinger SI. Catheter replacement of the needle percutaneous arteriography: A new technique. Acta Radiol 1953;39:368 - 3. Sznajder JI, Zveibil FR, Bitterman H, et al. Central vein catheterization. Failure and complication rates by three percutaneous approaches. Arch Intern Med 1986;146:259 4. Newman BM, Jewett TC Jr, Karp MP, Cooney DR. Percutaneous central venous catheterization in children: first line choice for venous Access. J Pediatr Surg 1986;21:685 ## **Author Information** # Mustafa Edis Department of Cardio-Vascular Surgery, Trakya University Medical Faculty # **Turan Ege** Department of Cardio-Vascular Surgery, Trakya University Medical Faculty ## **Enver Duran** Department of Cardio-Vascular Surgery, Trakya University Medical Faculty