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Abstract

Ferritin is a protein that playa a very important role in the storage of iron in the body. Ferritin is now emerging as a very
important factor in the pathogenesis of diseases such as atherosclerosis , cancer , neuropsychiatric disorders to name a few. A
number of mechanisms such as pro oxidant and pro inflammatory pathways are responsible for this. Ferritin performs diverse
functions in the body besides iron storage. Alterations in the structure and concentration of ferritin have been observed in
various diseases, establishing it as an important marker. The present review aims to understand the mechanisms involved in the
cyto toxicity of iron and discuss some important disorders in which ferritin has emerged as an important bio marker. As ferritin
has been established as a etiological factor in several disorders: pharmacological interventions to reduce its levels may prove
beneficial . Indeed iron chelation therapy has been tried in various cancers with promising results.

FERRITIN : A MULTIDIMENSIONAL
BIOMARKER

Ferritin and iron homeostasis have been implicated in the
pathogenesis of many diseases, including disease involved in
iron absorption transport and storage, atherosclerosis, cancer
,neuropsychiatric disorders and diabetes .

FERRITIN STRUCTURE

Ferritin is the major intracellular iron storage protein in all
organisms. The ferritin molecule is a hollow protein shell
(outside diameter 12-13 nm, inside 7-8 nm, Mr about
500KDa) that permits storage of upto 4500 Fe(III) atoms [1].

Each apoferritin shell is assembled from 24 polypeptide
chains of 2 species, the heavy subunit (H-subunit) and the
light subunit (L-subunit). The H subunit has a molecular
weight of 21KDa and has a relatively acidic electrophoretic
mobility, whereas the L subunit is a smaller protein with a
molecular weight of 19KDa. The H-subunit functions as a
ferroxidase that oxidizes iron to the Fe(III) from, whereas
the L-subunit is associated with iron nucleation,
mineralization and long term iron storage [23]. The ratio

between H and L subunit is a ferritin shell varies widely in
different tissues. L-subunit rich ferritin predominates in iron
storage organs such as the heart and pancreas[4567].

The H to L ratio is not fixed, but is rather quite plastic: it is
readily modified in many inflammatory and infectious
conditions and in response to xenobiotic stress,

differentiation and developmental transitions[8].

FERRITIN:GENETICS

About 16 copies of the H-gene and 5 copies of the L-gene
have been identified in humans, but the most of them are
intronless pseudogenes. A single functional human H gene
and L gene have been identified and are localized on
chromosome 11q 23 and 19 q 13.3 respectively [91011].

A novel mitochondrial ferritin (MtF) is encoded by an
intronless gene on chr 5q23.1. The MtF may have a role in
regulating mitochondrial iron homeostasis and heme
synthesis [12].

REGULATION OF FERRITIN LEVEL

ROLE OF IRON

The content of cytoplasmic ferritin is regulated by the
translation of ferritin H and L mRNAs in response to an
intracellular pool of chelatable or labile iron. Thus, when
iron levels are low, ferritin synthesis is decreased;
conversely when iron levels are high, ferritin synthesis
increases [131415161718].

This process is mediated by interaction between RNA
binding proteins and a region in the 5 untranslated region of
ferritin H and L mRNA termed the iron responsive element
(IRE) that has a stem loop secondary structure [19].

There are two RNA binding proteins, iron regulatory
proteins, 1 and 2 (1RP1 and 1RP2), that bind to this stem
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loop structure and inhibit mRNA translation [20].

ROLE OF CYTOKINES AND INFLAMMATION[]

TNF-α and interleukin 1-α transcriptionally induce the H
chain of ferritin, suggesting that pathway related to
inflammation and stress can impact on ferritin regulation.
The observation that ferritin H could be selectively
transcriptionally regulated provided a molecular model to
explain the linkage between inflammation and the
modulation of subunit composition and content of ferritin,
largely inexplicable based on posttranscriptional regulation
alone.

Ferritin H is regulated by TNF-α hme a cis-acting region
(FER2) located 4.8 kb upstream of the transcriptional start
site that binds the transcription factor NFKB.

Cytokines also regulated ferritin postranscriptionally. In the
Hep G 2 hepatic cell line, induction of ferritin synthesis was
observed with a number of cytokines: IL-Iβ, IL-6, TNF-α
[2324].

Secretion of ferritin is stimulated by cytokines. In primary
cultured human hepatocytes, IL-1α and IL-6 induced a
transient secretion of ferritin at 24 hr followed by a decline
to baseline, whereas TNF treatment result in a sustained
increase in ferritin secretion, reaching a level 10 times that
found in untreated cells. Cytokines play a pivotal role in the
cellular response to infection and ferritin plays a prominent
role in the cytokine response. Lipopolysaccharide (LPs), a
component of the outer membrane of gram-negative
bacteria, elicits a variety of reactions that involve ferritin
LPS administered endotracheally to rats induced ferrritin
protein expression.

ROLE OF NITRIC OXIDE (NO) AND OXIDATIVE
STRESS.

There is strong experimental support for ferritin as a
protectant against oxidant stress. In tumour cell lines,
sensitivity to oxidants was inversely correlated with ferritin
protein levels. Increased ferritin levels reduce the low
molecular weight iron pool. These findings are consistent
with observations that a reduction in ferritin sensitizes cells
to pro oxidant cytotoxicity, that over-expression of ferritin
reduces oxidant species in cells challenged with oxidants and
reduces oxidant toxicity as well as the importance of ferritin
H ferroxidase activity in limiting oxidant toxicity [25].

Oxidants induce ferritin transcription by directly targeting
conserved region of ferritin genes. Oxidative stress can also
contribute to ferritin induction by inactivating IRPI through

reversible oxidation of critical cysteine residues.

Oxidants may also alter ferritin transcription and translation
through release of iron from cellular proteins. Oxidants,
including ROS and nitric oxide, may release iron from
ferritin, IRPI or hemoglobin, either directly or through heme
oxygenase. This can lead to ferritin induction through IRP
inhibition, and perhaps through direct iron-mediated
transcriptional regulation of ferritin. Cytokines may also
affect ferritin translation indirectly through their ability to
induce iNOS and increase NO. No in turn causes the
activation of both IRP 1 and IRP2. Mechanisms
hypothesized to underlie NO-mediated induction of IRP
binding activity include cluster dis assembly (1RP1),
intracellular iron chelation (1RP1 and 1RP2), or increased
denovo synthesis (1RP2) [2627].

BIOCHEMICAL BASES OF IRON CYTO-
TOXICITY

IRON HYPOTHESIS

Iron donates of reactive oxygen species (ROS), such as the
hydroxyl radical (OH) from H2O2 via the fenton reaction.28
Excessive iron in tissue may catalyze the formation of highly
reactive forms of oxygen free radicals. Lipids proteins and
DNA are biomolecules targeted by iron-mediated ROS.
These radicals can causes oxidation of low density
lipoprotein (LDL). Ox LDL can activate endothelial cells to
produce a variety of cell adhesion molecules and
chemotactic factors that promote migration and binding of
monocytes and lymphocytes to the arterial wall.
Macrophages are then formed and further inflammation
leads to the formation of foam cells and development of
atherosclerosis.

ROS produced by iron may specifically target some tumour
suppressor genes, leading to a novel concept of ‘genomic
sites vulnerable to Fenton reactions’. To support this
concept, it has been shown that lipid peroxidation derived
aldehydes such as 4-hydroxynonenal (4-HNE) can interact
with DNA to form exocyclic guanine adducts and 4-HNE-
DNA adducts are preferentially formed at the third base of
codon 249 in the p53gene.29 Administration of Fe-NTA, a
renal carcinogen, can specifically cause allelic loss of the
p16 tumour suppressor gene in renal tubular cells [282930].

IRON-INDUCED OXIDATIVE-RESPONSIVE
TRANSCRIPTION FACTORS.

Besides the direct attack, of iron-mediated ROS on DNA, it
has recently been proposed that iron can induce early
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signaling pathways that may modulate activities of several
oxidative-responsive transcription factor, such as activator
protein-1 (Ap-1) and nuclear factor kappa B (NF-KB) [31].

Since putative AP-1 and NFKB binding sites are found in
the promoters of many genes, such as interleukin-6 (IL-6)
and IL-8, activation of these transcription factors may
contribute to the up-regulation of those cytokine genes [3233].

IRON INDUCED RESPONSE TO HYPOXIA.

the formation of new blood vessels and angiogenesis is well
known as a crucial step in tumour growth and progression.
Angiogenesis can be induced by hypoxic conditions and
regulated by the hypoxia-inducible factors (HIF-1) [34].

HIF is a heterodimer composed of α and β subunits. HIF-1α
hydroxylase that hydroxylates HIF-1α at proline 564 is iron
dependent. This process mediates the ubiquitination of
HIF-1α for proteosomal degration. Iron depletion or hypoxia
prevents hydroxylation of proline 564 that leads to increased
p53 levels [35].

OTHER MECHANISMS

There are at least two more plausible mechanisms for iron
carcinogenesis, that is:

iron serves as a nutrient for cell growth

iron may affect the immune system

Iron is an absolute requirement for cell proliferation, as iron-
contanining proteins catalyze key reactions involved in
oxygen sensing, energy metabolism, respiration and DNA
synthesis. Without iron, cells are unable to proceed from G1
to the S phase of cell cycle [36].

Iron also modulates immune effector mechanisms, such as
cytokine activites (INF-gamma effector pathway towards
macrophages), nitric oxide formation or immune cell
proliferation, and thus hosts immune surveillance [37]. The

immuno-regulatory balance induced by iron may increase
growth rate of cancer cells and infectious organisms leading
to cancer development [38394041].

Ferritin iron represents approximately 20% of total iron in
the body and serum ferritin has a relative high reliability
coefficient among pre-and post menopausal women
tested[4243]. Since serum ferritin concentration correlates well

with various parameters: it could be a good biomarker for
body iron status. Yet, ferritin concentration can be

influenced by sex, age, infection and frequency of blood
donation. Therefore, a molar ration of iron per ferritin may
provide better iron indicators for cancer risk evaluation than
ferritin itself [44] .

FERRITIN IN HUMAN DISEASES

FERRITIN IN INHERITED HUMAN DISEASE

Genetic mutations of the ferritin IRE region as well as
coding regions of ferritin cause inherited human diseases.
Ferritin L IRE mutations cause the hereditary
hyperferritinaemia-cataract syndrome, which is a cataract
syndrome, which is an autosomal dominant disease that is,
characterized the elevated serum ferritin levels and an early
onset bilateral cataract [1].

Neuroferritinpathy, a dominantly inherited movement
disorder that is characterized by a decrease in serum ferritin
and an abnormal deposition of ferritin and iron in the brain,
is caused by a mutation in the C-terminus of the ferritin
gene.

A single A to U mutation at position 49 in the second
residue of the 5-bse IRE loop sequence of H-ferritin leads to
an increased affinity of the IRE for IRP, which reduces
ferritin H protein and leads to iron overload [1].

FERRITIN IN ATHEROSCLEROSIS

Results from animal studies support the notion that iron
plays a significant role in the progression of atherosclerosis.
Several studies supported our association of free iron with
lipid induced atherosclerotic lesion formation. Fatty streak
resistant mice as opposed to fatty streak-susceptide mice
showed significantly low intracellular free iron and high
levels of liver apoferritin in response to an atherogenic diet.
A number of studies have been carried out to assess the role
of ferritin in the pathogenesis of CAD in humans.

Solonen et al first reported a significant association between
the serum ferritin level and the risk of MI in a Finnish
Kuopio Inchaemic Heart Disease Risk factor study (KIHD)
of 1931 middle-agged men during an average followup of 3
years [45] . They found that Finnish men with a serum ferritn

≥200 µg/L had a 2.2 higher risk of MI than did men with
lower serum ferrtin. In a study that analysed the relationship
between sonographically assessed carotid atherosclerosis
and body iron stores, Klechl et al reported an increase in the
odds ratio of 1.54 per 100µg/L of s. ferritin (p < 0.001) in a
cross-sectional analysis of 847 men and women aged 40 to
79 years [46].
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Iron depletion has also been shown to reduce the risk of MI
and other cardiovascular disease events. Facchin and Saylor
explored the effect of iron depletion on cardiovascular risk
factors in 31 patients who were phlebotomized monthly or
bimonthly to achieve iron depletion state near to deficiency
levels. In this study, they observed a significant increase in
HDL and reductions in LDL, triglycerides, fibrinogen and
blood pressure (p < 0.001) [47].

Tuomainen et al conducted a prospective, 5.5 year followup
study involving a cohort of 2682 finnish men, and showed
that MI was decreased 86% in blood doriors as compared
with non-donors (p <0.001) [48].

However, some epidemiological studies have failed to
confirm the presence of a direct association between the iron
status and the risk of developing cardiovascular disease.

In the US Physician study, Stampfer et al found that men
with serum ferritin levels ≥200µg/L were not at a higher risk
of MI [49]. Moore et al examined the association between

serum ferritin and carotid arterial intimal thickening by
carotid duplex ultrasound in a case control study from the
Atherosclerosis Risk in communities (ARIC). They found no
association between serum ferritin concentrations and the
severity of arterial intimal thickening [50].

FERRITIN IN CANCER

Iron-induced malignant tumours were first reported in 1959
by repeated intramuscular injection of iron dextran complex
in rats. Beginning in the 1980s, some epidemiological
reports have associated increased iron exposure with
elevated cancer risk in either prospective or ratio-prospective
studies.

COLORECTAL CANCER

A study by stevens et al and the follow-up study by
Wurzelman et al on the cohort of the National Health and
Nutrition Examination survey I showed a positive
association between dietary and body iron stores with
colorectal cancer risk [5152]. Neison et al and Bired et al

showed that body iron stores were positively associated with
the development of precancerous lesions in the colon,
colonic adenoma or polyps [5354].

Increasing iron concentration in human intestinal coco-2
cells resulted in increased protein and DNA oxidative
damage, as shown by the immunoreactivity for 4-hydroxy-2-
nonenal modified proteins and 8-oxo-2-deoxy guanosine.

LIVER CANCER

Most experimental and human data support the hypothesis
that iron overload is a risk factor for liver cancer. It is the
excessive accumulation of iron in hepatocytes that causes
hepatocellular injury, which leads to the development of
fibrosis, cirrhosis and hepatoma [55].

In chemical induced hepatocarcinogenesis, iron was shown
to greatly sensitize mice to the induction of hepatic
porphyria by hexachlorobenzene [56]. Levels of lipid

peroxides as well as 8-hydrox-2 deoxyguanosine and
oxidative DNA damage, were significantly increased in mice
following combined iron/hexachlorobenzene.

In attempts to study the cancer initiating, promoting and/or
progressing effects of excess hepatic iron, dietary iron
overload in combination with fusonisin B1, or poly
chlorinated biphenyls, or diethylnitrosamine, were tested in
animal models. Gernerally speaking, iron depletes
intracellular antioxidants such as ubiquinones, and acts at
least as a promoter of already initiated hepatocytes in HCC
development [57585960616263].

KIDNEY CANCER

Numerous studies have lined increased risk of kidney cancer
in workers of iron and steal industry.

Ferric nitrilotriacetate (Fe-NTA) is a renal carcinogen in
rodents [64]. Neither H, K and N-Ras encogenes nor were

p53 tumour suppressor genes found mutated in the RCC
tissues induced by NTA indicating that iron is responsible
for RCC development [6566]. In contrast p16 tumour

suppressor gene was shown to be vulnerable. Ferric ion
complexed with NTA in this model is thought to be a tumour
initiator as well as promoter through the production of
reactive oxygen species and free radicals [64].

The role of iron in estrogen induced renal carcinogenesis
was studied by investigative the effects of iron content of
hamster diets on tumour induction by estradiol. The renal
tumour incidence increased significantly in hamsters treated
with estradiol plus a diet enriched in iron [67].

Redox cycling of catechol estrogen metabolites between
quinine and catechol forms can cause the reduction of Fe3+
to Te2+ and release Fe2+ from ferritin, which in turn
generates hydroxyl radicals by iron-catalyzed reactions [68].

BREAST CANCER

Elevation of serum ferritin in breast carcinoma is well
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known, and levels suggest the severity of the disease.
Weinstein et al found that malignant tissue had 6 times the
ferritin concentration, as did benign breast tissue [69].

Malignancies with the highest ferritin concentrations were
more anaplastic suggesting that the major site of the
increased ferritin was the malignant epithelium. The
postulated that ferritin may be a marker of neoplasia.
Studding ferritin levels in breast carcinoma tissue may give
us information about anaplasia and the proliferation index.

LUNG AND STOMACH CANCERS

Workers of iron ores and steel foundries have an elevated
risk of lung and stomach cancers.

In a nested case control study comprising of 144 male lung
cancer cases and 558 controls in a large iron and steel
foundry in Austria and Spain, workers having every been
employed in the blast furnace had an excess lung cancer risk
(odds ratio = 2.55) as compared to a reference group of
workers not employed in a metal producing department [70].

It has been shown that some mineral dusts from iron are
mines are very active in an oxidative process in aqueous
medium, implying the formation of radical oxygen species.

The presence of a Fe2+ ion on the surface of the particles or
its desolution from the surface may be responsible for the
oxidant formation. Similarly, it was shown that redox
activities of coal dusts, coal fly ashes and asbestos correlated
well with levels of bioavailable iron in the dusts, extent of
ferritin induction by the dusts as well as levels of lipid
peroxidation in cells treated with the dusts [71727374757677].

The role of ferritin has also been noticed in
neuroblastomas[78] and melanomas [79].

FERRITIN IN NEUROPSY CHIATRIC DISEASES

ALZEIHMER’S DISEASE

Pinero et al reported that iron accumulates in the brain in
alzeihmer’s disease without a concomitant increase in
ferritin. An increase in iron without proper sequestration can
increase the vulnerability of cells to oxidative stress. A more
stable IRE/IRP complex in the AD brain could increase
stability of the transferring receptor mRNa and inhibit
ferritin synthesis [80] .

PARKINSON’S

Semiquantitative histological evaluation of brain iron and
ferritin in parkinson’s disease was performed.Results
indicated a significant increase in Fe(III) and ferritin in the

substantia nigra of parkinsonian brains [81].

RESTLESS LEG SYNDROME

In a study conducted by Mizuno et al , a positive correlation
was observed between serum and cerebrospinal fluid ferritin
levels.They concluded that low iron concentration caused by
the dysfunction of iron transportation from serum to CNS
led to the pathogenesis of restless leg syndrome [82].

ATTENTION DEFICIT HYPERACTIVITY
SYNDROME (ADHD)

ADHD is one of the most common neuropsychiatric
disorders of childhood. It consists of two symptom domains ,
hyperactivity and inattentiveness. Lower ferritin levels are
associated with higher hyperactivity scores [83].

MULTIPLE SCLEROSIS

Deposition of iron has been recognized recently as an
important factor of pathophysiologic change including
neurodegenerative process in multiple sclerosis. Quantitative
measurements of iron content with magnetic field correlation
imaging which demonstrate increased accumulation of iron
in the deep gray matter in patients with multiple sclerosis
which may be associated with the disrupted iron outflow
pathway [84].

FERRITIN IN DIABETES MELLITUS 2

The level of ferritin in DM type 2 was evaluated in the E-
PIC – Norfo1K prospective study. Forouhi et al found that
baseline serum ferritin was higher among cases than control
participants (men 96.6 v/s 67.8 ng/ml, p < 0.001, women
45.9 v/s 34.8 ng/mL, p = 0.005). In analysis, adjusted for
known risk factors (age, BMI, Sex, family history, physical
activity, smoking habit and dietary factors measured by 7-
day food diary, the risk of diabetes was markedly elevated in
participants with clinically raised ferritin compared with the
lowest quartile. This shown that serum ferritin is an
important and independent predictor for the development of
diabetes. This finding may have important implication for
understanding the actiology of diabetes [85].

IRON CHELATION: ROLE IN THERAPEUTICS.

The increased dependence of tumour cells on iron hs led to
the suggestion that depleting iron may represent a strategy to
limit tumour growth. Indeed, tumour cells in a highly
proliferative state have a high density of transferring
receptors, and antisense CDNA for the transferring
receptors, was shown to reduce TFR mRNA and expression,
resulting in more inhibition of growth of human breast
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carcinoma cells than normal breast cells. Monoclonal
antibodies against TFR severely restricted the growth of
lymphoma tumours in mice [86].

The chelator currently used to treat iron overload disease,
defroxamine has shown anti-prolifertive activity against
leukemia and neuroblastoma activity against leukemia and
neuroblstoma cells in vitro, in vivo, suggesting that iron
deprivation may be a useful anti cancer strategy.
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