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Abstract

This study aims at providing an understanding of deterministic modeling as applied to the population dynamics of infectious
diseases. Deterministic modeling is based on the nonlinear dynamics of infection spread in a population. The SEIR deterministic
model can provide useful insights into the mechanic of many common childhood diseases such as measles. Simple
deterministic models can help us identify the factors controlling the persistence and stability of transmitted viral and bacterial
infections within large human communities. Deterministic models exhibit damped oscillations, show random variations (in
chaotic regime), and predict the spread of infectious diseases. This paper provides an introduction to the theory and methods of
deterministic modeling and will be followed by two other articles that will show how sensitivity analysis can be helpful for the
forecast and control of common infectious diseases at the population scale.

INTRODUCTION

Traditional epidemiology studies disease with linear
statistical (stochastic) models that consider individuals as
though they were independent units of observation like balls
in an urn. Further, these models are static and descriptive of
epidemiologic phenomena that are thought to have attained a
stable state(1). This traditional way of thinking disease

processes is based on Newtonian physics; this means that,
however complicated the disease mechanic may be, the
relation of causes to effects is straightforward, that is,
interactions are either ignored or considered second-order
processes(2). Despite the pervasiveness of this well

entrenched positivism, the complexity of natural processes
has been recognized by the French mathematician Henri
Poincaré for the first time at the start of the XXth century.
Since then, the new paradigm of complexity has attempted to
slowly find its way into epidemiology. Today, the study of
complex systems involving nonlinear dynamics is
investigated seriously(3, 4, 5). More recently, chaos theory has

been developed that showed the importance of nonlinear
phenomena in infectious disease processes(6). This new

paradigm has elicited a conceptual upheaval because the
fixed and static traditional approach is seen as inadequate to
study the dynamic aspects of nonlinear phenomena(7).

Complex systems change, evolve, adjust, and adapt their
dynamics constantly. Nothing is static or invariant in
complex systems, and everything has a historic background

that constantly impinges on the particular pathway the
system borrows. Epidemic phenomena are a case in point
here. Propagation of infection in a population is complex as
the system changes and adapts to exogenous (e.g., seasonal
variation in the contact rate) as well as endogenous factors
(e.g., herd immunity, prevalence of cases). Actors
(individuals) in complex systems are interdependent and
institute a dynamic that cannot be recognized by static or
linear statistical models. Nonlinear deterministic modeling
allows us to approach moderately complex systems and
understand the interdependence between the individuals that
constitute the system. This is a turning point in causal
research as it allows to go beyond the traditional causality
paradigm(5).

This paper aims at providing an understanding of how
dynamic deterministic modeling can unveil the mechanic of
the population dynamics of diseases. Infectious diseases at
the population scale have been well studied with
deterministic models(8,9). Also, this paper will provide a

basic understanding of dynamic modeling as applied to
infectious diseases in populations. This paper will later be
followed by a second that will deal with an application of
deterministic modeling to common childhood diseases; we
will then show how dynamic modeling will allow us to
modify the parameters of disease control as well as to
forecast disease dynamic. Last, a third paper will describe
how deterministic modeling can help figure out the interplay
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of AIDS and TB.

STOCHASTIC VERSUS DETERMINISTIC
MODELS

Two types of model are useful in the study of infectious
diseases at the population scale: these are stochastic and
deterministic models.

Stochastic models rely on among-individual chance variation
in risks of exposure, disease, and other factors. They are
used when chance fluctuations or known heterogeneities are
important as in small or isolated populations. Stochastic
models have several advantages. More specifically, they
allow follow-up of each individual in the population on a
chance basis. Stochastic models, however, can be laborious
to set up and need many simulations to yield useful
predictions. Notwithstanding, incorporating chance variation
into transmission processes provides a range of possible
outcome-based probabilities(10). These models can become

mathematically very complex and do not lend themselves to
an explanation of the dynamic. We will not expand on
stochastic models in this paper.

Deterministic models, also known as compartmental models,
attempt to describe and explain what happens on the average
at the population scale. They fit well large populations.
These models categorize individuals into different subgroups
(compartments). The SEIR model, for example, includes
four compartments represented by the Susceptibles,
Exposeds [infecteds], Infectious, and Recovereds
[immunizeds]. Further, the models specify the transition
rates between the compartments as susceptibles may become
exposed, exposed infectious, and so on. The best known
transition rate is the force of infection or attack rate that
measures the rate at which susceptibles become infected.

Most models of infectious disease processes used until now
are deterministic because they require less data, are
relatively easy to set up, and because the computer softwares
are widely available and user-friendly. The dynamics of the
SEIR model are now well understood so that deterministic
models are commonly used to explore whether a particular
control strategy will be effective. Furthermore, many other
more complex models exist that can incorporate stochastic
elements, but we shall not be concerned with these models
here.

INFECTIOUS DISEASES DYNAMICS

Before going on with deterministic modeling, it is important
to understand how epidemics set up in a population. For

diseases conferring long-lasting immunity following
infection (e.g., measles), the number of susceptibles
decreases with time. Before the outbreak of a first measles
case, the proportion of susceptibles (S) is 100% in the
population because everyone is susceptible; therefore, the
proportion of exposed (E), infectious (I), and immune (R) is
0. When an epidemic starts to spread, S decreases, and I and
R increase until every infected gets immunized. Chart 1
displays an example of a measles epidemic situation for a
population of 100 000 persons.

Figure 1

Chart 1: The dynamic of measles epidemic

The potential of infection in a population depends on the
basic reproduction number (Ro) that is defined as the
average number of persons directly infected by an infectious
case during his entire infectious period when he enters a
totally susceptible population(11). The development and size

of an epidemic are determined by Ro that relies on:

the attack rate (risk of transmission per contact),

the number of potentially infectious contacts that
the average person in a population has per unit
time,

and the duration of the infectivity period(11).

If, at any time, Ro gets smaller than 1, the disease eventually
disappears from the population because, on average, each
infected cannot insure transmission of the infectious agent to
one susceptible; this results in new waves of infection being
of lesser amplitude than preceding ones and, finally, to
disease elimination. On the other hand, if Ro equals 1 the
disease remains endemic as one infectious transmits the
infectious agent to one susceptible on the average. Last, if
Ro gets greater than 1 an epidemic builds up. This threshold
theorem has been established by Kermack and
McKendric(12) and explains why the introduction of
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infectious individuals into a community of susceptibles does
not automatically give rise to an epidemic outbreak.

DETERMINISTIC MODELING

The first step of deterministic modeling consists in having a
complete and realistic picture of the biology of the disease
(e.g., the duration of the period of infectivity, incubation
period, immune status after infection). The second step is to
collect data on the demographic, epidemiologic, and biologic
characteristics of the infection (transition rates) and the
population (birth and death rates). Third, a parsimonious
model is selected.

Figure 2

Chart 2: Common models of infectious diseases

Chart 2 shows some of the more common models used in
infectious disease modeling. For example, the SEIR model
(most appropriate for measles) takes care of the infecteds
(E). This means that the model (and the available data)
accounts for the latent period of the disease; this model is
needed when infected individuals (exposed) go through a
latent period before being infectious. The latent period of
measles is well known (about 8 days), and this information
has to be translated in an appropriate model. If, on the other
hand, one deals with an infectious agent with no latent
period (individuals are infectious as soon as infected) then
SIR would offer a relevant alternate model. Further, one may
notice that the SEIR model postulates long-lasting immunity
after infection since there is no transition from the
recovereds to the susceptibles. The SIRS and SEIRS models
rather posit that the recovereds become susceptibles as their
immunity dies away.

The rate-limiting step in epidemics is Ro. This is a measure
of the force of infection, i.e., the rate at which susceptibles
become infected. Ro implies that susceptibles get in contact
with infectious and that the contact can lead (with a
probability b) to effective transmission of the infectious
agent (this takes account of the type of contact and the
duration of the period of infectivity). A mass action principle
(everyone can contact anyone in the population) is involved
in determining the frequency of infections that denies
heterogeneity in the contact rate. The SEIR model thus
remains simple because no population age-structure is
considered, random mixing is posited whatever the
geographic distance and social organization characterizing
the S and I compartments (mass action principle), no
seasonal variation of the contact rate is involved (such as one
would like to postulate for measles), and the force of
infection is age/time-independent. Further, the population
birth and death rates, which could alter the dynamics of the
disease, are considered stable so that population growth or
dampening is denied by hypothesis. As it stands, therefore,
the SEIR model can be used for short-term forecasts only.
Of course, the neglected quantities of the SEIR model can be
allowed for if data are available, but this would make for a
more complex model. It has however been shown that the
SEIR model as is can indeed capture the mechanic of disease
infection in the population and allow for meaningful
predictions.

DETERMINISTIC MODELING USING
DIFFERENCE EQUATIONS

Deterministic models may be analyzed with either difference
or differential equations. Difference equations describe the
transitions between the different disease compartments using
discrete time steps and by expressing the number of cases at
a given time t+1 in terms of that at the preceding time t. For
the SEIR model, this would mean that:

Figure 3

where:

R t = number of immunes at time t

S t = number of susceptible at time t

E t = number of infected but not yet infectious at time t

I t = number of infectious at time t
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l = is the risk of a susceptible individual becoming infected
or the average rate of infection per susceptible per unit time (
l = b*I with b being the effective contact probability
between infectious and susceptibles ). Consult Philippe(13)

for a difference between a risk and a rate.

f = is the risk of an infected individual becoming infectious
per unit time

r = is the risk of an infectious individual of recovering
(immune) per unit time.

The number of Susceptibles, Exposeds (infecteds),
Infectious, and Recovereds (immunizeds) at time t+1 is
therefore given by the following difference (recurrence)
equations:

St+1 = St – ßStIt (or: St – lSt)

Et+1 = Et + ß StIt – fEt

It+1 = It + fEt – rIt

Rt+1 = Rt + rIt

Modeling with difference equations can easily be
implemented using “Excel” software (Microsoft Office).
Information is required on the contact parameter (ß) and
transitions parameters (f and r). Technically, the transition
parameters are supposed to be transition risks, but if the rate
remains small (< 0.10) the risk is approximately equal to the
rate(13). The reliability of models based on difference
equations depends on the size of the time step used. The
most accurate description of the transmission dynamics are
obtained using time steps which are as small as possible.
When the time step is too large, for example 5 days, the
output of the model is nonsense as the dynamic of infection
is not a matter of weeks but days or hours. This occurs
because the transition rates (assumed to be continuous in
time) are at variance with the time step used. Time steps
should therefore match the epidemiology of the disease
process to model. Thus, differential equations (rather than
difference equations) have to be used to describe the
transmission dynamics of an infection.

DETERMINISTIC MODELING USING
DIFFERENTIAL EQUATIONS

To highlight the fact that we consider the transitions for
continuous rather than discrete time intervals, we use the
symbols S(t), E(t), I(t) and R(t).

Figure 4

where:

R (t) = number of immunes at time t

S (t) = number of susceptibles at time t

E (t) = number of infecteds but not yet infectious at time t

I (t) = number of infectious at time t

l = the rate (force) of infection per unit time (the time unit is
in fact an interval from t to t+d where d is a very small)

f = the rate at which an infected individual becomes
infectious per unit time

r = the rate at which an infectious individual recovers per
unit time.

In line with the above, the rate of change (per unit time) in
the number of susceptibles, infecteds, infectious and
immunes are given by the following differential equations:

dS/dt = –lS(t)

dE/dt = lS(t) – fE(t)

dI/dt = fE(t) – rI(t)

dR/dt = rI(t),

where dS/dt means «change in S per (small) unit time dt».
More explictly, dS/dt = –lS(t) means that the compartment
of susceptibles depletes itself of the quantity lS(t) as
susceptibles become infected (E) during the time interval dt.
The number of newly infected [lS(t)] is added to the exposed
(E) compartment (second equation) which is, itself, reduced
by a quantity fE(t) on behalf of the infectious compartment
(third equation), and so on.

Modeling with differential equations can be undertaken with
specialized softwares like “Stella” (High Performance
Systems) or “ModelMaker” (Family Genetix). These
softwares allow the user to sketch models and estimate the
impact of transition parameters and their change on the
epidemic situation. This aspect of modeling (sensitivity
analysis) will be the topic of the second paper in this series.

The models presented in Chart 2 are quite simple. They
assume that individuals mix at random (mass action
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principle), they do not stratify individuals according to age
and sex, the population size is assumed constant over time
(no birth or death rates are taken into account), and the
transition rates are expected to remain invariant in time.
Some of these assumptions may be unrealistic, but the model
can nevertheless reproduce the commonly observed short-
term seasonal cycles of infections observed in many
populations.

DISCUSSION

The major problem with all infectious disease models is that
the contact pattern in the population is often unknown, and
somewhat difficult to measure(11). This is, however, a key
parameter that yields the force of infection or transmission.
Further, the lS(t) or bS(t)I(t) equation component is a source
of important nonlinearity of the SEIR model. It can make the
difference between regular cyclic variations of incidence and
chaos(6). Notwithstanding, the models with their current
limitations can be used to better the understanding of the
nonlinear dynamics of infection spread in a population. This
is because one must distinguish between predictive modeling
and explanatory modeling(14). Predictive modeling uses

complex models in the hope to mimic observation as closely
as possible. Explanatory modeling is rather concerned with
capturing the main features of a dynamic given some
assumptions. Explanatory modeling thus aims at
understanding the dynamics. Explanatory modeling can,
therefore, help interpret observed epidemiological trends,
guide the collection of data towards further understanding,
and design programs for the control of infectious
diseases(9). In fact, simple deterministic models can help us
gain insight into the factor controlling the persistence and
stability of transmitted viral and bacterial infections within
large human communities(8). On the whole, explanatory
deterministic models exhibit damped oscillations, show
random variations (in chaotic regime), and predict the spread
of infectious diseases.

The next paper in this series will show how changes in the
transition rates or varying the assumptions of the models can
alter the profile of an epidemic. This step of data analysis
will provide us with a powerful mean not only to understand
how epidemics evolve, but also how they can be controlled.
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