Thoracic Paravertebral Block: Provided By Nysora - New York School Of Regional Anesthesia

A Hadzic, J Vloka

Citation

A Hadzic, J Vloka. *Thoracic Paravertebral Block: Provided By Nysora - New York School Of Regional Anesthesia*. The Internet Journal of Anesthesiology. 2001 Volume 5 Number 4.

Abstract

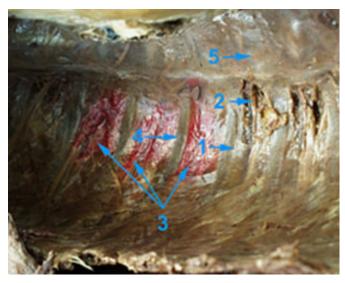
Demonstration of Thoracic Paravertebral Block

Figure 9

Patient Position: Sitting with the neck flexed

Common Indication: Surgery (Total mastectomy and/or axillary dissection), Pain management (Cholecystectomy, thoracotomy)

Needle: 22 gauge 3 1/2 inch spinal needle (Quincke type)


Volume: 5-6 ml per level

ANATOMICAL LANDMARKS

Paravertebral space is limited anteriorly by the parietal pleura (Figure 1), posteriorly by superior costotransverse ligament and medially by the postero-lateral aspect of the vertebra and the intervertebral foramen (Figure 2). Spinous process is the main landmark for this block (Figure 3).

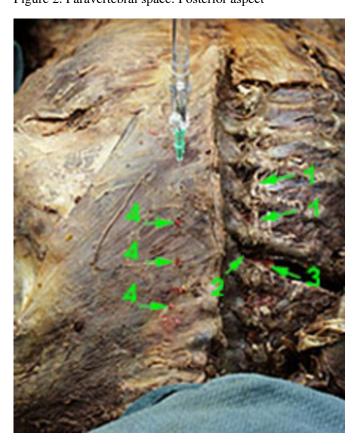

Figure 2

Figure 1. Paravertebral space: A view from inside the chest cavity.

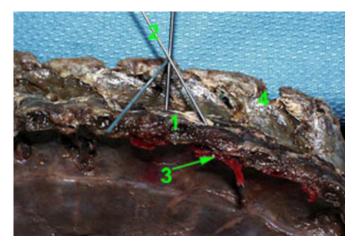

- (1) Parietal pleura
- (2) After the parietal pleura is removed, a nerve root is exposed in the paravertebral space.
- (3) Spread of a solution of dye in the paravertebral space.
- (4) A rib seen through the parietal pleura
- (5) A body of the vertebra covered with parietal pleura

Figure 3 Figure 2. Paravertebral space: Posterior aspect

- (1) Superior costotransverse ligament
- (2) Paravertebral space
- (3) Dispersion of a solution within the paravertebral space
- (4) Distances between transverse processes 2.5 cm lateral to the superior aspect of the spinous process.

Figure 4Figure 3. Simulation of the paravertebral block in a cadaver.

- (1) The simulation needle is in contact with the transverse process
- (2) The needle is redirected to walk off the superior aspect of

the transverse process

- (3) Parietal pleura stained with red dye injected during paravertebral block simulation
- (4) Spinous process

APPROACH AND TECHNIQUE

The patient is in the sitting position and the neck flexed, so that the chin touches the chest. The spinal processes are palpated and marked with a skin marker (Figure 4).

Figure 5 Figure 4: Marking of spinal processes

The insertion points are marked 2.5 cm lateral to the superior border of the spinal process (Figure 5), and infiltrated with local anesthetic.

Figure 6Figure 5: Insertion points

Twenty-two gauge 3 1/2 inch needle attached to a tubing and syringe with local anesthetic is inserted perpendicular to the skin and advanced 2-4 cm until the transverse process of the respective vertebra is contacted (Figure 6).

Figure 7 Figure 6: Insertion of needle

The needle is then withdrawn to the skin, and re-inserted to walk off the superior aspect of the transverse process (Figure 7). The needle is advanced 1-1.5 cm past the pre-measured skin-bone distance. After negative aspiration, 5-6 ml of local anesthetic is injected at each level to be blocked.

Figure 8 Figure 7: Injection

TIPS

Total mastectomy requires blockade extending from C7 to T6 level.

A fast onset and the most consistent results for surgical anesthesia is achieved with a mixture with equal volumes of 1.5% alkalinized mepivacaine (1 mEq of NaHCO3 per 30 mL of mepivacaine) with 1:200,000 epinephrine and 0.5% bupivacaine.

Resistance on injection of the local anesthetic is likely due the needle tip position in the superior costotransverse ligament. In this case, the needle should be simply advanced 2-3 mm.

{image:9}

Copyright © 1998-2002. With permission of the authors and NYSORA. In collaboration with The Internet Journal of Anesthesiology. Find more information about NYSORA by clicking here!

References

1. Richardson J, Sabanathan S. Thoracic paravertebral analgesia. Acta Anaesthesiol Scand 1995;39:1005-15.
2. Coveney E, Weltz CR, Greengrass R, Iglehart JD, Leight GS, Steele SM, Lyerly KH. Use of paravertebral block anesthesia in the surgical management of breast cancer. Ann Surg 1998;227:496-501.

Author Information

A. Hadzic, MD, PhD

Co-director, Regional Anesthesia, Anesthesiology, Anesthesiology, St. Luke's-Roosevelt Hospital Center

J. D. Vloka, MD, PhD

Director, Regional Anesthesia, Anesthesiology, Anesthesiology, St. Luke's-Roosevelt Hospital Center