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Abstract

Introduction Sensitivity and specificity are two components that measure the performance of a diagnostic test. Receiver
operating characteristic (ROC) curves display the trade-off between sensitivity and (1-specificity) across a series of cut-off
points. This is an effective method for assessing the performance of a diagnostic test.

Methods The aim of this research is to provide a reliable method for estimating a smooth and convex ROC curve to help
medical researchers use it effectively. Specified criteria such as likelihood ratio test, ease of use and computational time were
used for evaluation. Using these criteria, parametric and non-parametric ROC curve estimation methods in two different
computer software packages were analyzed. A simulated bi-cauchy distributed ROC curve was compared, using the two
estimation methods, to a simulated binormal distributed ROC curve, where the latter stands as the known truth.

Results Compared to non-parametric methods, parametric methods failed to yield a smooth and convex ROC curve for small
sample size. On the other hand, parametric methods showed superiority over non-parametric methods in estimating a smooth
and convex ROC curve for large sample sizes.

Conclusion Parametric methods for ROC curve estimation is recommended over non-parametric methods for large sample size
continuous biomarker data sets but it is conservative for small sample size.

1. INTRODUCTION

Receiver operating characteristics (ROC) curve is used to
analyze and evaluate the performance of diagnostic systems.
The ROC curve is a graphical display of sensitivity on the y-
axis against (1-specificity) on the x-axis. It is used to
determine a cutoff value for that specific diagnostic test
giving the optimal sensitivity and specificity, which is a
point at which one can differentiate between two statuses
(healthy and diseased). For this reason, ROC curves stand as
an important method for evaluating the performance of
diagnostic medical tests. The true positive fraction (TPF)
and the false positive fraction (FPF) are other names for the
two measures displayed on the ROC curve axis.  Where TPF
is the population proportion correctly classified as diseased
and FPF is the proportion of healthy subjects incorrectly
classified as diseased.

A convex ROC curve is one that has a monotonically

decreasing slope, where for every pair of points the curve
doesn’t lie below the line that connects these two points. It
was proven that non-convexity in ROC curves represents an
irrational decision process and is not accepted in medical
research [1]. As a result, hooking and data degeneracy
should be avoided in order to display a reliable ROC curve.
The term “hooking” refers to the upward concave region in
the fitted curve. When “hooking” occurs it is unlikely to
represent the actual behavior of human observers [2]. On the
other hand, a fitted ROC curve with horizontal and vertical
line segments are said to be 'degenerate' [3].

The research done in this field proposed several methods for
ROC curve estimation. Generally, we can classify them into
parametric, non-parametric and semi-parametric ROC
estimation methods. The non-parametric methods don’t
require any distributional assumptions of the diagnostic test,
while the parametric methods are used when the statistical
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distribution of the test values is known and has the
advantage of producing a smooth ROC curve [4]. Finally,
the semi-parametric methods which assume using a non-
parametric approach to estimate the distribution of test
results in healthy population, but then assume a parametric
approach for the distribution of test results in diseased
population.

Previous literature focused on the area under the curve
(AUC) and partial area under the curve (pAUC) as the main
criteria determining an effective and precise ROC curve.
Although AUC stands as reliable evaluation criteria, other
aspects such as smoothing and convexity were not fully
studied. Smoothness and convexity mainly contributes to the
final shape of the ROC curve. Therefore, the estimation
method with greater smoothness and convexity will yield a
ROC curve with an improved performance than other
methods.

The gap in the literature in identifying the recommended
methods to estimate a smooth and convex ROC curve was
the reason for the following evaluation of different ROC
curves estimation methods.

2. METHODS

In this study, the aim was to simulate a diagnostic test results
with a continuous outcome and compare the smoothed ROC
curve with a known truth using two methods. In an ideal
situation, the ROC curve would pass through the point (0, 1).
In this case, there would be an ideal performance for the
diagnostic test in completely separating healthy and diseased
subjects. A normal distribution for both healthy and diseased
yielded an ROC curve with the optimum shape. This
estimated binormal curve from this binormal distribution
curve stood as the known truth.

In order to simulate a reliable binormal distribution, several
attempts were made using R software (See Appendix A). In
these attempts, all parameters for healthy and diseased
distributions were fixed except for the mean of the diseased
population [5]. This mean was tested across several
increments to simulate a binormal data set for a gold
standard ROC curve. The two distributions in this binormal
data set had almost overlapping density functions curves. In
comparing parametric and non-parametric estimation
methods, a study showed considerable evidence that the ratio
of standard deviations of distribution for healthy to diseased
populations in a simulated binormal model need to be higher
than 1 [5]. On the other hand, representing the realistic

continuous biomarker data, a Cauchy distribution was used.
The Cauchy distribution was chosen as it had an undefined
mean and variance with a symmetric distribution matched
median and inter quantile range (IQR) to a normal
distribution. Moreover, in the ROC curve estimation
analysis, a study estimated a cauchy distribution for the
biomarker data density function [6]. These characteristics
helped to simulate a continuous realistic biomarker data
which can be matched and compared to a known truth.
Empirical curves for both binormal and bi-cauchy ROC
curves were plotted using a large sample size of 10000. This
large sample size aided in evaluating the true behavior of bi-
cauchy curve without smoothing compared to binormal
curve. Also, it will help in detecting any non-convexity
expected in the shape of the bi-cauchy ROC curve.

Previous studies proved that sample size had a contribution
in the performance of different ROC curve estimation
methods. For example, a study proved that non-parametric
approach was conservative with small sample sizes less than
20 [7]. In order to test the performance of both parametric
and non-parametric ROC curve estimation, two sample sizes
representing two extreme scenarios of 20 and 10000 were
simulated and analyzed for each software. The sample size
of 10000 will represent a large sample size for a study with
realistic biomarker data which might have enough power to
detect changes. Moreover, a sample size of 20 was referred
to as a small sample size where certain estimation methods
might experience some difficulties.

2.1 Evaluation Criteria

2.1.1. Likelihood ratio test

In this study, the main focus was on the shape of the curve as
it is an important feature for its overall performance.
Therefore, the slope of the curve was chosen and calculated
at specific threshold points. The slope from the tangent line
at a point on a smoothed ROC curve represents the
instantaneous change in the TPR per unit change in the FPR.
As a result, the slope on the ROC curve corresponds to the
likelihood ratio at that point, which can be estimated only for
tests with a continuous outcome [8]. Also, the slope of the
ROC curve was related to the bias of the detector at a given
operating threshold [9]. For a test value, the Likelihood ratio
(LR) will be the probability of that test result among the
diseased subjects divided by the probability of the same test
result among the healthy subjects [8]. The equation was as
follows: LR= Sensitivity/ (1-Specifictiy).
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The simulation function was looped over 100 likelihood
ratio results for each specificity given sensitivity.
Accordingly, the means of the likelihood ratio at these three
thresholds on the bi-cauchy ROC curve were calculated with
the mean of the corresponding points’ likelihood ratio of the
binormal ROC curve. The bias was then measured by the
absolute difference between likelihood ratio values for both
binormal and bi-cauchy curves at the specified threshold
points. Due to the nature of cauchy distribution, failed loop
runs was expected. As a result, proportion of discarded bi-
cauchy simulated runs (per 100) was calculated.

2.1.2. Ease of use

Three different sub-criteria were chosen to encompass the
use of the software and data handling, which were based on
a previous study [10]. Based on the author’s opinion, a
Likert scale was used. Ranging from totally disagree to
totally agree, the score was converted on a scale of one to
five respectively. Accordingly, each answer on the ROC
curve estimation method for each package used was assigned
a maximum score of 5. The sum of all answers values gave
the final score. The sub-criteria used are described briefly
below.

Compatibility: Simulating data sets into the package and the
ability to create a loop function. Also, using the ROC curve
functions effectively.

Output: The program should show the capability of saving
calculated graphs and drawing more than one curve in one
graph. Also, output should be easily exported into an excel
sheet for further analysis.

User Manual: This will assess the comprehensibility of the
user manual and the online solutions for software problems
provided by the manufacturer.

2.1.3. Computational time

As the simulation will run over 100 loops, it was important
to present the estimation method with the least computation
time. For each calculated output form the likelihood ratio
test, the computational time was recorded (per 100 loops)
and tabulated as a continuous outcome in minutes.

2.2 Choosing threshold points on the ROC curve

As described by Metz (1978), three possible operating points
on the ROC curve were enough to analyse the overall
performance of an operator [11]. These points represented

the strict, moderate and lax thresholds represented on the
sensitivity axis by points 0.1, 0.5 and 0.9 respectively.
Specificities given sensitivities at these points were
calculated. As illustrated by Maxion and Roberts (2004) the
likelihood ratio was calculated by finding the coordinates of
the desired threshold points values on the ROC curve [12].

2.3 Software

The R software with pROC package was used for the
parametric method. For the non-parametric method, pcvsuite
package in R software was chosen. These packages allowed
the comparison of two ROC curves throughout the required
evaluation criteria. The simulated binormal and bi-cauchy
ROC curves were smoothed for each software. After which a
comparison of the two ROC curves was done. The general
features of the chosen packages are summarized in Table 1.
It is important to note that bootstrapping for retrieving 95%
confidence intervals for specificities at given sensitivities
could not be done in the pcvsuite package. As a result,
bootstrapping was removed from non-parametric method in
order to apply a fair comparison regarding the computational
time criteria. See Appendix B for complete R code used.

3. RESULTS

3.1 Simulated biomarker data

The Cauchy distribution for both healthy and diseased
population were matched to the previous normal distribution
using two parameters, which were the median and the inter
quantile range (IQR). Figure 1 shows the simulated
empirical binormal and bi-cauchy ROC curves with a sample
size n=10000. The Cauchy distribution successfully
mimicked the realistic continuous biomarker data behavior.
This was also estimated in a previous study in the biomarker
data analysis [6]. The bi-cauchy curve which was matched to
the binormal distribution showed lack of performance in its
shape by not following the binormal curve.

Moreover, visually the performance of the bi-cauchy curve
seemed to lack convexity in certain areas when compared to
the binormal ROC curve.

3.2 Evaluation results

As a symmetric distribution with an undefined mean, some
loop results from the bi-cauchy distribution had extreme
values. These extreme values gave error messages when
trying to estimate an ROC curve in both methods. As a
result, the simulated data from some loops had to be
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discarded from the analysis. Table 2 illustrates the
proportions of failed runs (per 100) and the computed
confidence intervals for each using the modified Wald
method.

Sample size n=20

Comparing the two estimation methods visually, the
parametric method appeared to experience some difficulty in
smoothing the bi-cauchy curve for small sample size. On the
other hand, non-parametric smoothed curve showed the
desired convexity in its shape (figures 2(a) and 2(b)).
Moreover, absolute differences of the likelihood ratios at
points 0.1 and 0.5 were extremely large for the parametric
method compared to non-parametric method as shown in
table 3.  The two estimation methods likelihood ratio
absolute differences came close together at the lax threshold
on the ROC curve at the point of 0.9 sensitivity. The lax
threshold, represented in the upper right part of the curve, is
where the operator usually had higher performance and
minimal bias.

Sample size n=10000

For large sample size, parametric method showed superiority
over non-parametric method in the absolute differences of
the likelihood ratios at points 0.1 and 0.5 (table 3). Although
the superiority was not by a great margin, but the convexity
visual comparison of both curves shown in figures 2(c) and
2(d) favors the parametric method.

Table 4 shows the results of the subjective evaluation for the
two used R software packages. Package pROC showed a
clear ease of use compared to Pcvsuite. This was clearly
noted in the output plots of the ROC curves, the user manual
comprehensibly and the online solutions provided for
common enquiries. As pcvsuite package is no longer
maintained, an older version of R software was used (version
2.15.3) which lacked some upgrades found in recent R
software versions. Moreover, adjustments had to be made for
pcvsuite R code to calculate specificities at given
sensitivities (Appendix B). Finally, the 100 loops
computational time for non-parametric estimation method by
pROC package was almost two minutes faster than
parametric method by pcvsuite.

4. DISCUSSION

Bi-cauchy distribution matched the characteristics of
realistic biomarker data when compared to a known truth
[6]. This was illustrated in the concave regions generated

when an empirical ROC curve was plotted. For small size
continuous biomarker data set, non-parametric methods
estimated a reliable smooth and convex ROC curve while
parametric methods failed to estimate a smooth and convex
one. On the other hand, parametric methods were
recommended for large sample size data sets.

These results gave further understanding of different ROC
curve estimation methods. As smoothness and convexity of
the ROC curve were not on wide research focus. Future
studies could benefit from these results, in choosing the
desired ROC curve estimation method based on the overall
shape and smoothness of the estimated curve rather than the
AUC only.

The results showing superiority of one estimation method
over another were contradicting across the searched
literature. This research results testing parametric and non-
parametric methods supports previous studies as well as
contradicts others. It was assumed that adding the semi-
parametric method to the comparison could eliminate this
contradiction and give more rigid conclusions. Previous
study proved that non-parametric approach was conservative
with small sample sizes less than 20 [7]. On the other hand,
this research had a contradicted interpretation on sample size
and smoothing which was conservative against parametric
methods. It is important to note that, few studies discussed
the difference in smoothing and convexity between ROC
estimation methods and none of them have used the same
evaluation criteria of this study.

Although the method for choosing the parameters for the
binormal distribution representing the known truth was
scientifically based, this might be susceptible to selection
bias. The chosen means and standard deviations might have
affected the results. Although, extreme caution was taken to
overcome selection bias, the presence of such bias cannot be
eliminated completely from simulation studies in general.
The calculated failed runs proportions were considered
minimal despite the slight increase of failed runs reported for
estimation of ROC curve using parametric method with
small sample size when compared to the other methods. For
the ease of use criteria, the subjective evaluation should have
been made by a group of researchers and the mean scores
from each person calculated. This was not applied in this
research thus increasing the chance of bias.

An older version of R software was used for pcvsuite
package which lacked some updated features found in the
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newer versions. As a result, the ease of use criteria might be
susceptible to bias due to the different versions of R software
used. Moreover, the bootstrapping option calculating
confidence intervals for specificities and given sensitivities
was not implemented in pcvsuite. As a result, bootstrapping
was not added in the function of pROC package. Removing
the bootstrapping option from analysis didn’t affect the
results, but could have added more precision if used. Also,
calculating specificities at given sensitivities function was
not found. As a result, a modification was done for the R
code in order to calculate the required coordinates. This
attempt had larger error margin as some sensitivities given
were rounded up and not exact figure also due to the
inability to bootstrap confidence intervals for the calculated
specificities. For more information on code adjustment see
Appendix B.

A complete analysis of the ROC curve estimation methods
could not be done without comparing with semi-parametric
estimation methods. The difficulty in simulating the
binormal and bi-cauchy distribution was the main reason for
the withdrawal of ROCkit which use the semi-parametric
ROC curve. Moreover, smoothing was not an option found
in computer software with semi-parametric methods. As a
result, semi-parametric methods were discarded from the
analysis. Although, it is thought that it will serve as an
optimum method for smoothing ROC curve, additional
programming codes need to be done to estimate a smoothed
semi-parametric ROC curve.

As for further work, other symmetric distribution could be
chosen to represent the realistic biomarker data such as t-
distribution. On the other hand, other computer software
such as STATA can be used. This would have allowed more
variability in the ease of use criteria. As the pcvsuite
package used in this study on R software is still updated and
maintained by the developer only for STATA software.
Therefore, it might have had more flexible options for
parametric ROC estimation methods.

Table 1

Table 2

Table 3

Table 4
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Figure 1

Empirical curves for bionormal and bi-cauchy distribution,
sample size=10000

Figure 2

(a): parametric ROC curves sample size = 20 (b): non-
parametric ROC curves sample size = 20 (c): parametric
ROC curve sample size=10000 (d):non-parametric ROC
curves sample size=10000

APPENDIX A

Binormal Distribution

The positive and negative population were simulated from a
normal distribution. The means and standard deviations can
differ for both populations in the binormal model. This
distribution is the most common model for an ideal
diagnostic system with continuous biomarker data and is
easy to implement [1]. For the previous two reasons, this
distribution was chosen for ROC curve estimation.
Moreover, representing the known truth, the estimated ROC
curve acted as the comparison benchmark or the gold
standard. Figure 3 shows 9 trials for choosing the reasonable
parameters for both healthy and diseased population. All
means and standard deviations were fixed expect for the
mean of diseased population. The final parameters chosen
were mean=10, standard deviation=10 for healthy population
and mean=-5, standard deviation=10 for diseased
population.

Bi-cauchy distribution
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The positive and negative population were simulated from a
Cauchy distribution [6]. The Cauchy distribution had a
symmetric nature which is matched to the normal
distribution. In this manner, it will mimic the realistic data
distribution. Moreover, it will stand as a good indicator to
test how smoothing of the ROC curve is sensitive to
departure from normality.  Since the mean and standard
deviation were undefined in a Cauchy distribution, the
median and interquartile range (IQR) were used to match
both distributions together. Figure 4 shows density plots for
both binormal and bi-cauchy distribution. The extreme
values for the symmetric nature of the bi-cauchy distribution
can be noticed.

The first intention was using bootstrap resampling to
calculate the estimates of the coordinates. The higher the
number of bootstrap the more precise the estimate but with
more time to compute. Previous studies commonly used
1000 bootstrap replicate and this method often yielded a
significant estimate [13]. For the purpose of this study and to
obtain a good estimate of the second significant digit, 2000
bootstrap replicates were expected to be done as
recommended from a previous study [14]. As discussed in
the main article, bootstrapping was difficult to calculate in
pcvsuite package and was removed from the simulation
function.

Figure 3

Binormal distribution over different mean values

Figure 4

Density plots for binormal and bi-cauchy distribution

APPENDIX B

Tables 5 and 6 shows the functions used in each R software
package.

Table 5

Table 6

R code

The following is the descriptive R code used to run the
simulations, plot ROC curves, calculate likelihood ratios and
apply on the AFP biomarker data set.

###################################

#choosing parameters for binormal distribution representing
the known truth

par(mfrow=c(3,3))

for (i in 1:9)

{

n=100000

mu=10
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sigma=10

y1=rnorm(n,mu,sigma)

controls=y1

for(mu in seq (from=-10, to=30, length=9))

{

print(mu)

n=100000

sigma=10

x1=rnorm(n,mu,sigma)

cases=x1

plot(density(cases),main="Normal Healthy and Diseased
PDFs") 

lines(density(controls),col="red",lty=2)

legend("topleft",c("Healthy","Diseased","mean"(mu)),col=c(
"black","red","white"), lty=1:2,bty="n")

}

}

 

#normal distribution for diseased sample size 1000

n=1000

mu=-5

sigma=10

x1=rnorm(n,mu,sigma)

cases=x1

 

#calculating median, IQR, mean and SD for normal
distribution of diseased population

med1=median(cases)

r1=IQR(cases)

m1=mean(cases)

s1=sd(cases)

 

#cauchy distribution for cases sample size 1000

x2=rcauchy(n,location=med1,scale=r1/2)

 

#normal distribution for healthy population sample size 1000

n=1000

mu=10

sigma=10

y1=rnorm(n,mu,sigma)

controls=y1

 

#calculating median, IQR, mean and SD for normal
distribution of healthy population

med2=median(controls)

r2=IQR(controls)

m2=mean(controls)

s2=sd(controls)

 

#cauchy distribution for healthy population sample size 100

y2=rcauchy(n,location=med2,scale=r2/2)

 

#combining cases and controls

normal=c(x1,y1)

normal1=data.frame(normal)

cauchy=c(x2,y2)

cauchy1=data.frame(cauchy)

 

#density plot for binormal and bi-cauchy distribution

par(mfrow=c(1,2))

z1=density(normal,main="Binormal Distribution")
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plot(z1)

z2=density(cauchy,main="Bicauchy Distribution")

plot(z2)

##########################################

#non-parametric method

library(pROC)

output=numeric(0)

#starts the time for the 100 loop

t1=Sys.time()

for(i in 1:100)

{

 

#simulate normal distribution for cases or diseased
population

n=5000

mu=-5

sigma=10

x1=rnorm(n,mu,sigma)

cases=x1

med1=median(cases)

r1=IQR(cases)

m1=mean(cases)

s1=sd(cases)

 

#simulate cauchy distribution for cases or diseased
population

x2=rcauchy(n,location=med1,scale=r1/2)

 

#simulate normal distribution for controls or healthy
population

n=5000

mu=10

sigma=10

y1=rnorm(n,mu,sigma)

controls=y1

med2=median(controls)

r2=IQR(controls)

m2=mean(controls)

s2=sd(controls)

 

#simulate cauchy distribution for controls or healthy
population

y2=rcauchy(n,location=med2,scale=r2/2)

 

#combining datasets into binormal and bicauchy

normal=c(x1,y1)

cauchy=c(x2,y2)

 

#simulating the truth for each marker

truth=c(rep(0,5000),rep(1,5000))

 

#binormal and bicauchy ROC curves

roc1=roc(truth,normal)

roc2=roc(truth,cauchy)

 

#calculating specificities at given sensitivities for each ROC
curve

a=c(ci.coords(smooth(roc1), x=c(0.1, 0.5, 0.9), input =
"sensitivity", ret="specificity", boot.n=2))

b=c(ci.coords(smooth(roc2), x=c(0.1, 0.5, 0.9), input =
"sensitivity", ret="specificity", boot.n=2))
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#calculating Likelihood ratios from given coordinates

LR1=0.1/(1-a[4])

LR2=0.1/(1-b[4])

LR3=0.5/(1-a[5])

LR4=0.5/(1-b[5])

LR5=0.9/(1-a[6])

LR6=0.9/(1-b[6])

output=cbind(output,c(LR1,LR2,LR3,LR4,LR5,LR6))

}

#measuring the time for 100 loops to finish

t2=Sys.time()

t3=t2-t1

t3

 

#exporting the output file to Excel sheet

write.csv(output,
"C:\\Users\\abdelrahman\\Documents\\R\\output.csv")

#########################################

#parametric method using pcvsuite package

output=numeric(0)

t1=Sys.time()

for(i in 1:100)

{

print(i)

n=10

mu=-5

sigma=10

x1=rnorm(n,mu,sigma)

cases=x1

med1=median(cases)

r1=IQR(cases)

m1=mean(cases)

s1=sd(cases)

x2=rcauchy(n,location=med1,scale=r1/2)

n=10

mu=10

sigma=10

y1=rnorm(n,mu,sigma)

controls=y1

med2=median(controls)

r2=IQR(controls)

m2=mean(controls)

s2=sd(controls)

y2=rcauchy(n,location=med2,scale=r2/2)

normal=c(x1,y1)

cauchy=c(x2,y2)

truth=c(rep(0,10),rep(1,10))

 

#estimating parametric ROC curve

a=c(roccurve(d="truth",
markers=c("normal","cauchy"),bw=TRUE,rocmeth="param
etric",genrocvars=TRUE))

 

#retrieving specificities at given sensitivities for each ROC
curve. Code adjusted to retrieve

# specificities at given sensitivities

d=which(abs(a$tpf[1,]-0.1)==min(abs(a$tpf[1,]-0.1)))

e=which(abs(a$tpf[2,]-0.1)==min(abs(a$tpf[2,]-0.1)))

 

#calculating likelihood ratios from given coordinates

LR1=0.1/a$fpf[1,d]
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LR2=0.1/a$fpf[2,e]

b=c(roccurve(d="truth",
markers=c("normal","cauchy"),bw=TRUE,rocmeth="param
etric",genrocvars=TRUE))

f=which(abs(b$tpf[1,]-0.5)==min(abs(b$tpf[1,]-0.5)))

g=which(abs(b$tpf[2,]-0.5)==min(abs(b$tpf[2,]-0.5)))

LR3=0.5/b$fpf[1,f]

LR4=0.5/b$fpf[2,g]

c=c(roccurve(d="truth",
markers=c("normal","cauchy"),bw=TRUE,rocmeth="param
etric",genrocvars=TRUE,nsamp=2000))

h=which(abs(c$tpf[1,]-0.9)==min(abs(c$tpf[1,]-0.9)))

j=which(abs(c$tpf[2,]-0.9)==min(abs(c$tpf[2,]-0.9)))

LR5=0.9/c$fpf[1,h]

LR6=0.9/c$fpf[2,j]

output=cbind(output,c(LR1,LR2,LR3,LR4,LR5,LR6))

}

output

#measuring the time for 100 loops to finish

t2=Sys.time()

t3=t2-t1

t3

write.csv(output,
"C:\\Users\\abdelrahman\\Documents\\R\\output.csv")

#############################################

#non-parametric method for estimating a smooth ROC curve
using biomarker data

library(pROC)

read.csv("afp.csv")

mydata=read.csv("afp.csv")

summary(mydata$marker)

roc(mydata$truth,mydata$marker)

roc1=roc(mydata$truth,mydata$marker,plot=TRUE,smooth
=TRUE)

hist(mydata$marker)

 

#parametric method for estimating a smooth ROC curve
using biomarker data

read.csv("afp.csv")

mydata=read.csv("afp.csv")

roccurve(d="mydata$truth",marker="mydata$marker",rocm
eth="parametric")

###############################################
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