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Abstract

In this paper we report a novel procedure to accurately estimate the power spectrum of the noise in the fMRI signal at a given
voxel location; the estimated power spectrum is used to determine the threshold used as shrinkage or soft threshold to remove
noise from both 1-D and 2-D fMRI signal. Spatial processing, such as clustering is done on the entire signal to isolate the BOLD
response and further investigate whether the new positions and numbers of the activation points are different from that of
theoretically anticipated positions for the experiment performed. It is confirmed that the anticipated positions of the processed
fMRI data and the actual positions of the activation points of the original fMRI data coincide as expected theoretically for the
experiment performed.

INTRODUCTION

Each activity a person performs is managed by a certain
location of the brain. The location of a brain directly related
to an activity can be visualized using images from functional
magnetic resonance imaging (fMRI) instrument. These
images are obtained using the changes between active and
non-active state of location a brain. The image contrast
obtained this way is very small, and fMRI instrument is so
sensitive that it picks unwanted signals or noise, that induce
distortions of the actual experimental signals, which can be
interpreted as false brain activities. The objective of this
paper is to remove noise or distortions, which are unrelated
to the experimental fMRI signals. The method, local cosine
is suggested to remove noise from fMRI data due to its
decorrelating effect in a temporal domain.

The main sources of noise are not fully understood. A
number of possible sources have been suggested, for
example, slow phase variations in the MR images due to
respiration movements, cardiac and other physiological
processes, patient movement, and local changes in the
magnetic field due to scanner instabilities. During fMRI
image acquisition process, high frequency components like
heart rate (0.6 –1.2 Hz) and respiration (0.1 – 0.5 Hz) are
under sampled with typical repeat times (TRs ) of 3 to 7s and
can, according to Nyquist's theorem, be expressed as low-
frequency (0.1 Hz) signal components or aliased higher
frequency signals [1].

Due to the fact that Rician distribution is used in the physics
of magnetic resonance and the Gaussian distribution in
functional neuroimaging, the noise, in the blood oxygenation
dependent (BOLD) response of an fMRI data, is both
Gaussian and Rician distributed. For high signal-to-noise
ratio (SNR) fMRI data, Rician distributed noise is
symmetric, thus, can be considered as Gaussian distributed.
For low SNR fMRI data, there is a difference between
Gaussian and Rician distributed noise, i.e, an image with
low intensity and Rician distributed has probability density
which is asymmetric. It was further shown that the
difference between two Rician distributed images is
symmetric and Gaussian distributed. Since an fMRI BOLD
response is the difference between two BOLD responses, the
active and passive state, thus, the noise in the resulting
BOLD response is symmetrically distributed, which is
characteristic of Gaussian distribution.

To remove the noise, first, the noise is decorrelated and then
the intensity of the noise is estimated statistically. Second,
the estimated noise is removed from the fMRI data in a
temporal domain adaptively. Real and simulated fMRI data
is used to confirm that the method remove noise and
preserve activities related BOLD response of an fMRI data.
In simulation environment, both one-dimensional (1-D) time
series and two-dimensional (2-D) images are used to test the
effect of the suggested methods on the signal-to-noise ratio
(SNR), and Mean-square-error (MSE), see Figure 2. In
processing 1-D data, local cosine processing recovered the
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original SNR with minimal MSE and with no visual residual
artifacts, see Figure 1. Compared to other processing
methods, local cosine performed as anticipated, i.e., it
extracted active points from a real fMRI data with minimal
processing errors and increased SNR positively. In general,
the SNR of signal-carrying coefficients has increased with
respect to the original voxels, when cosine is used, thus
improving the potential sensitivity of detecting the activation
patterns buried in large noise.

After denoising, to extract the activation points related to the
BOLD respose: first, to reduce the false discovery rate,
clustering is performed in spatial domain based on optimal
minimal cluster size obtained from Monte Carlo simulation
for a user-defined confidence level to determine the
minimum size of clusters with minimal false discovery rate.
Second clustering on the real fMRI data is performed using
Euclidean distance using the minimum cluster size
information. In this work, it is shown that local cosine can
recover a signal from a data with a noise that has intensity of
any standard deviation away from the center of the data.

MODELING OF FMRI DATA

Overall, we need to model and remove deterministic
components from the time series before proceeding with the
statistical analysis. The fMRI signal ym(t) at point M in the

brain is given by:

ym(t) = βmx(t) + (t) (eq. 3.1)

Where n(t) is stationary Gaussian noise, – βm  is a scalar that

measures the strength of the response at the voxel M. When
we process ym(t) using local filtering and the resulting

equation will be:

Cym(t) = Cβmx(t) + Cn(t) (eq. 3.2)

where c is coefficient of local cosine. Note : ym(t) can be

extended to accommodate 2-D. Equation 3-2 makes the

noise uniform, i.e, N (0,σ 2 ) , throughout the fMRI time
series. Once the noise is uniform, it is easy to remove it.
During the noise removal process, the temporal behavior of
the voxel time series is used to remove noise, i.e., the
temporal domain decorrelates the noise. The noise level or
standard deviation of the noise can be estimated and used in
the noise normalization process to determine the coherent
signal as described in Section 0.

BACKGROUND

Statistical Parametric Mapping (SPM) tool and many

research works use Gaussian filtering to remove noise from
an fMRI data. Gaussian filtering is low-pass filtering, that is
being used traditionally to process fMRI data, but it can
remove relevant detail information. Gaussian filtering
requires a window or a kernel size to be derived from the
fMRI data itself to avoid processing errors . The other most
widely used methods are Fast Fourier Transform (FFT) and
SPline, but FFT unable to identify sharp transient events that
are similar to fMRI data,. SPline is FFT and wavelet based,
its sharp frequency characterization makes a good fit to
process an fMRI or time related signal [2] but it needs

optimization [3].

Most of the existing literatures suggest performing both the
analysis and filtering in the time domain or temporal
domain, and after the analysis phase in the time domain, an
inverse transform is applied to reconstruct an activation map
from the coefficients that are designated as significant.
While this reconstructed map is very useful for visualization
purposes, it does not have a direct statistical interpretation,
that is, the statistical parameters, such as, t or z values are
computed in the time domain and there is no straightforward
way to map the statistics to the spatial domain.

In this paper both statistical analysis and filtering are
performed separately and such an approach helps optimize
the detection of false positive activation points of the voxel
time series.

METHODOLOGY - ESTIMATION OF NOISE AND
LOCAL COSINE PROCEDURES

In the temporal domain, the whole signal become
symmetrical distribution and mean and median coincide,
thus µ = ḿ. In addition, we assumed fMRI noise to be µ
centered at zero (0 ); thus, MAD can be linked, for a normal
distribution, to the average standard deviation σ(x) of a single
observation x as MAD(x) = ασ(x) where α = 0.6745. . Through
out this work this relationship is used to estimate noise for 1-
D and 2-D fMRI signal at each voxel location.

The DICOM data with activation points is collected form
patients and transformed into AFNI [4] format. The signal

from AFNI is processed as specified below and ported to
AFNI for visualization and local cosine processed to
determine the activation points in the brain and to compare
and contrast the processed signal with other fMRI processing
methods.

The steps used in local cosine processing are as follows:
Note that for 1-D and 2-D fMRI data processing the same
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algorithms apply except that for 2-D each row and column is
processed separately and then combined together.

Determine the cosine basis of the given fMRI data as
follows:

Preprocess the fMRI data using folding operator1.
equation, then determine the cosine basis.

Estimation of the noise level of the fMRI data from2.
its distribution

Determine the best basis using Shannon entropy as3.
implemented by Coifman-Wickerhauser[5] , which
states:

Start from the bottom of thea.
decomposition tree and mark every thing

Determine the entropy of each element ofb.
the tree, and then if the entropy of a
parent node is less than or equal to the
sum of entropy of its the two children,
them unmark the children and mark the
parent, otherwise leave the children
marked, continue this way until you
reach the top.

Remove the noise residue:5.

Reconstruction of the modified or filtered signal.6.

Go to step 1 and repeat the steps until the entire7.
time series or all fMRI slices are processed

End8.

RESULTS

Figure 1

Figure 1 Graphical comparisons of processing 1-D data in
simulation environment (Original Signal-to-noise ratio =
3.736)

Figure 2

Figure 2: Quantitative comparisons of different methods to
process a 1-D noisy data

The results of processing fMRI data using local cosine are
shown below. Both simulation and experimental real fMRI
data are used to study the efficiency of the suggested
methods. Both 1-D and 2-D simulated data with correlated
and uncorrelated noises with known standard deviation is
used to study the outcome of different algorithms. The 2-D
simulation data uses an image with varying degree of
standard deviation of noise generated in the laboratory.
Figure 2 depicts the graphical comparisons For 1-D
simulation data processing.

For 2-D processing, correlated and uncorrelated noise with
known standard deviation is added to a 2-D image and the
noise is estimated and then removed using local cosine,
when the fMRI data is processed with known and estimated
noise level, processing using the known noise level
outperformed processed using estimated noise due to the fact
that estimation takes into consideration the noise that was
inherently present in the signal.

To eliminate false positive, Bonferroni correction, the
simplest method to minimize false discovery rate, is
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considered too conservative for spatially correlated noise. In
this report corrections based on modified Bonferroni [6]

coupled with minimal number of voxels in a cluster from
Monte Carlo simulation is used. Monte Carlo simulation
determines the minimum number of voxels in a cluster given
the confidence level. This approach, to control false
discovery rate, is more powerful than Bonferroni correction.
In this paper, local cosine based denoising and voxel
clustering on the outcome of Monte Carlo simulation is used
to control false discovery rate of the given fMRI data. Since
true region of activation will tend to occur over contiguous
voxels whereas noise has much less of a tendency to form
clusters of activated voxels, clustering helps separate the
noise from the true signal [7,8,9,10]. A cluster is formed using

distance from the center of a voxels to nearest neighborhood
to determine if a particular voxel should be added to a
cluster. If the calculated euclidean distance between voxels
is less than the specified distance, the voxel is included in
the cluster, however, some voxels that are far apart may be
included in the calculation and these voxels may belong to
different functional behavior, to avoid the inclusion of
voxels from different functional behavior, a single voxel
width is used as connection distance with a Monte Carlo
simulation for given confidence level α = 0.05 to determine
the minimum number of voxels in a cluster, assuming the
underlying population of voxels intensities has normal
distribution.

Figure 3

Figure 3: Cluster of Activation Points when the subject is
finger tapping

The brain processes different information in different way,
for example, when the subject was instructed to process
items according to their meanings ( is the word hot or cold ?)
or when the subject is instructed to perform bilateral finger
tapping at a set of interval of time. The former task was
associated with activations in a set of brain regions including
left lateral prefrontal cortex (PFC) and left medial temporal
cortex. The latter showed relatively greater activation in
right and left PFC. In this experiment no comparison across
subject is performed and an individual subject data is
analyzed independently, and the subject was instructed to
perform bilateral finger tapping as brain activation mapping
of this action can be seen on both sides of lateral prefrontal
cortex, and this finding, Figure 3 ,is consistent with
theoretical basis of neural functions for a healthy individual,
the complete result of the processing an fMRI obtained from
a healthy person is shown in Figure 4.

The other most important thing to notice is, during the
experiment, sometimes the well instructed subjects do all
kinds of things in addition to the task they were asked to
perform and this showed up in the fMRI images, as seen in
Figure 4 interpretation of the results should take into
consideration this kind of events. Furthermore, the best
strategy is to mask the data to include only the areas or
regions that corresponding to the activities in the brain.
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Figure 4

Figure 4: Cluster of Activation Points when the subject is
finger tapping
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