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Abstract

INTRODUCTION

Continuing self-education and appraisal of the medical
literature are simultaneously a responsibility and a joy for
the physician who intends to keep abreast of new
developments and incorporate new research findings into
clinical practice. It is a responsibility, given the tremendous
accrual of new knowledge. It is a joy because this stimulus
keeps one’s mind alive and renews the original feelings that
prompted the study of medicine.(1) Feinstein notes, ``The

statistician brings a long tradition of intellectual neglect of
the significance of management of clinical data. He finds as
his collaborators, clinicians who have a long tradition of
intellectual fear of statistics.’‘(2) He also noted that the

numerical method was introduced into clinical medicine in
1836 by Pierre Louis, who helped end the popularity of
blood-letting by counting and comparing the results of
patients treated in various ways. Louis was both attacked and
vilified according to Feinstein who refers to Louis’
experience as, “A caveat for any clinician who questions an
accepted therapy of his era and who urges his colleagues to
make better use of their senses and statistics in evaluating
therapy.’‘ He also quotes Louis, ``Let those, who engage
hereafter in the study of therapeutics, pursue an opposite
course to that of their predecessors. Let them labor to
demonstrate rigorously the influence and the degree of
influence of any therapeutic agent, on the duration, progress,
and termination of a particular disease.’‘ Thus, one faces
strong positive and negative stimuli to pursue the goals of
this chapter.

The medical literature contains reports of well-conceived,
well-conducted, and well-analyzed studies in addition to
reports of ill-conceived, poorly conducted, and inadequately
analyzed studies. How can one tell the good from the bad?
Although this will remain a continuing and perplexing

problem for the clinician, we hope to provide some
assistance in separating the wheat from the chaff. Although
the reader may make some inferences, guided by prior
knowledge of the quality of a journal, for instance,we should
approach the evaluation of an existing medical report and the
creation of our own research in a more formal and structured
manner. Although it is tempting to read the title, abstract,
and conclusions and then rush to apply the new methodology
or treatment, we should spend the time to evaluate the entire
article. This has the dual advantages of training our often
capricious minds and also avoiding errors due to our
precipitous acceptance of the new finding. Remember,
``jumping to conclusions seldom leads to happy landings.’‘
(3) The high-quality journal that uses vigorous peer review

and meticulous editorial appraisal will likely publish good,
solid, and sound reports of medical studies. But even with
such journals, the occasional poor paper can slip through the
peer review editorial process and achieve the ``importance’‘
of publication. With the proliferation of journals, it is also
true that articles that fail to pass the stringent peer review of
prestigious journals may also achieve publication in another
journal that is struggling to fill its allotted pages. Hence, it is
important that the clinician, in assessing medical reports in
areas of particular interest, has the ability to assess critically
and formulate judgments concerning the strengths and
weaknesses of published medical reports.

CRITICAL READING OF THE MEDICAL
LITERATURE

A formalized process aids particularly in the evaluation of a
medical report to ensure that the conclusions are well
supported and to further the development of one’s own
critical acumen. These are general questions that apply to
virtually any research report involving the collection and
analysis of data.
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OBJECTIVE AND HYPOTHESIS

Obviously, the most pertinent starting point is an
understanding of the investigator’s objective. The
investigator has the obligation to state clearly and
specifically the purpose of the study conducted, but this may
be difficult to discern. In such cases, we may question
whether the author had, indeed, a clear objective. ``Fishing
expeditions,’‘ that is, extensive data collection projects with
the intention of exploring and identifying important
relationships, achieve success when the captain knows where
the fish are. In other words, the so-called gold mine of data
does not guarantee that statistical search will lead to pay dirt
and reveal important new relationships. The author, or we as
researchers, must formulate specific objectives and a clear-
cut hypothesis for testing. Lack of an understanding of
objectives handicaps both the reader and the author in any
assessment or interpretation of the results.

A more specific and somewhat more subtle question in
assessing objectives is classification of a study as descriptive
and exploratory versus analytic. Using epidemiologic
terminology, descriptive studies are those that ``describe’‘
diseases, characterize disease patterns, and explore
relationships, particularly in regard to person, place, and
time. Such studies mainly serve the purpose of “hypothesis
generation.’‘ The specific hypothesis can then be tested by
means of an analytic study, one whose primary objective
involves the test of a specific hypothesis.

To illustrate this distinction, a descriptive study reported the
use of high-level positive end-expiratory pressure (PEEP) in
acute respiratory insufficiency in patients who developed
severe, progressive, acute respiratory insufficiency despite
aggressive application of conventional respiratory therapy.
(4) Later, the term ``optimal PEEP,’‘ introduced in the first

study, was updated in another descriptive study of 421
patients reported in 1978. (5) The second study entailed

treatment of a large group with respiratory failure using
titration of PEEP in conjunction with intermittent mandatory
ventilation (IMV) but using cardiovascular interventions to
support cardiac function until a preselected end point of 15%
shunt could be achieved. The first study represented a
description of the development of a treatment regimen; in
the second study, refinements in this treatment regimen were
applied to a broader population. Later, a hypothesis was
constructed to test whether, in moderate arterial hypoxemia,
there was any improvement in patient outcome or resource
utilization using ``optimal PEEP’‘ compared with similar
modalities of therapy, with an end point defined as

achievement of nearly complete arterial oxygen saturation at
nontoxic inspired oxygen fractions.

The hypothesis that PEEP titration to achieve an
intrapulmonary shunt of less than 20% would have a better
outcome or would achieve faster resolution of the disease
process could not be substantiated in the analytic study. (6)

The two descriptive studies 4,5 served to identify a specific
hypothesis that the third or analytic study tested.

STUDY DESIGN

The reader should consider carefully the definitions of the
groups studied and the population to which the investigators
intend to refer their findings. For instance, in the three
studies quoted, one might assume that the failure to prove
the hypothesis in the third study invalidated the findings of
the two earlier descriptive studies. The third, an analytic
study, however, involved only patients with early and
moderate arterial hypoxemia. The original group of patients
who were studied specifically excluded these patients and
concentrated on developing therapy for those who had
persistent hypoxemia despite aggressive application of
conventional respiratory therapy. Thus, a technique that
reversed hypoxemia in patients who were refractory to the
then ``conventional therapy’‘ of acute respiratory
insufficiency was found to be not useful in another
population that had only moderate hypoxemia and did not
have true adult respiratory distress syndrome (ARDS). If the
authors do not state clearly the populations with which they
are dealing, the readers can easily lose this important
distinction. This has even greater importance in review
articles that may omit the important qualifiers or modifiers
found in the original reports. The fact that a particular form
of therapy useful in advanced disease has no particular
advantage in patients with mild disease indicates that we
should restrict therapy to those patients who can benefit
rather than arrive at some alternative conclusion that titration
of PEEP to preselected end points has no advantage.

The reader should examine carefully the Materials and
Methods section for a description of the study design.
Epidemiologically, there are two major classifications of
study design: experimental and observational. Loosely
defined, an experimental study is one in which the
investigator has control over or can manipulate the major
factor under study. The epitome of the experimental study is
the randomized controlled trial in which the investigator
demonstrates ``control’‘ over the factor under study by
randomizing patients to various regimens. Many
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prophylactic and therapeutic studies tend to be experimental
in design. One cannot assume that just because a study was
experimental and the investigator may have randomized
patients that the study was well done and its conclusions are
valid. Experimental studies are prone to various sources of
bias and to poor execution. The label ``randomized’‘ is not
equivalent to assurance of high quality, nor does it alone add
validity to the study. Thus, randomized studies also need
careful assessment of their design, methods, analyses, and
conclusions. One other factor, “blinding” is often viewed as
an attribute of the highest quality studies. If there are
subjective elements used to judge the effectiveness of
treatment,there is a compelling rationale to blind the
investigators. If there are subjective assessments of the
patients’ response,there is a compelling rationale to blind the
subjects. If all of the outcome variables are objective,
blinding, strictly speaking, is unnecessary. Thus in the
assessment of a new medication to relieve pain, double
blinding (both subjects and investigators) is necessary.

When the investigator cannot manipulate the major factor
under study, he or she must rely on what has been observed;
this study is an observational study. We should not view
observational studies as being inferior to experimental
studies. Clearly, a tight, well-designed, well-executed
experimental study carries the greatest strength of evidence,
but observational studies can also provide substantial, sound
medical evidence. In fact, a well-planned and well-executed
observational study can be much more informative than a
weakly designed and poorly executed randomized study.
There are various approaches to the design of observational
studies, such as cross-sectional, case control, prospective
cohort, and retrospective cohort. The interested reader
should consult basic epidemiology or statistics textbooks for
further descriptions of these various design strategies as well
as the relative strengths and weaknesses of each design
format. (7,8)

With respect to observational studies, one should determine
whether the data collection was prospective or retrospective.
The principal advantage of prospective data collection is that
the researcher, having clearly identified the objectives, can
ensure collection of this relevant information in a manner
that he or she can determine. Retrospective analysis of
medical records depends on what happens to appear in the
record, often with no indication of the manner in which the
information was obtained. For example, sex, age, and
hospital outcome (survival or death) are key data elements
that may not appear for every patient in a retrospective chart

review. Clearly, without a specified protocol, one cannot
anticipate that a daily blood gas, serum creatinine, or any
other intermittent measurement dependent on a specific
order will appear in the chart. Everyone should attempt a
retrospective study (at least once) to learn the pitfalls and the
impossibility of obtaining a complete data base. This would
enable each of the then-frustrated researchers to read other
retrospective studies both with a great deal of deserved
skepticism and with empathy for the difficulties with such
research.

Selection of the study group is another important step. One
should look for possible sources of selection that would
make the sample atypical or nonrepresentative. It is
interesting that even such seemingly ``random’‘ allocation of
cases such as alternate days may introduce an unappreciated
bias. For instance, the Trauma Service at the University of
Miami/Jackson Memorial Medical Center had two separate
teams that alternated coverage every 24 hours. Patients
admitted on alternate days, therefore, are cared for by
different teams of physicians. A study that entailed alternate-
day assignment to treatment groups would entail, as well, the
factor of differences in physician practice style, a factor that
one could not disentangle in analysis of study results.

We must also consider the nature of the control group or
standard of comparison. We frequently encounter the
``historical control’‘ group that, almost always, has a
``poorer’‘ result than the contemporary group. The problem,
of course, is that the basic assumption that the modality of
treatment under investigation is the only cause for the
difference in results is clearly erroneous. It has been
tempting to ascribe the remarkable reduction in wartime
mortality from World War II to Korea to Vietnam to the
marked diminution in delay between injury and treatment.
However, the entire surgical training experience changed
during that time, an almost completely new pharmacopoeia
was available in Vietnam, and, most assuredly, many other
variables are yet unaccounted for between the two eras. In
fact, the principal reason for randomization in a study is to
attempt to distribute the unknown and potentially important
variables equally among groups to avoid selection bias. We
may also see this effect if patients accrue slowly and the
study thus runs over many years. Other aspects of therapy
may change and have a greater impact on outcome than the
original variable selected for study.

VALIDITY AND GENERALIZABILITY

Two aspects of clinical research that sometimes perplex
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beginning researchers and inexperienced readers are validity
and generalizability. Validity deals with the ability of a
study to give a scientifically sound answer to the question
posed. Insofar as possible, this answer should be free from
bias, uninfluenced by the effects of other related or
confounding variables and with good statistical precision.
Only then is there a basis for a valid study result.

Generalizability deals with extrapolation of study findings to
a larger population or to other groups. Assessment of
generalizability depends on the degree to which the study
subjects are representative of some larger target population,
how well the selection of study subjects simulates the
process of drawing a random sample from a population.

The ideal is for studies to be both valid and generalizable. In
practice, this is rarely the case. In the design of clinical
research, investigators face many situations in which they
must choose between validity and generalizability. When
faced with a choice, undoubtedly they should opt for
validity. Without a valid study, an investigator has little or
nothing of scientific merit. The investigator may have
actually drawn a random sample from a larger population
and have virtually ideal generalizability. But, if in the
process, validity was threatened or compromised, the
findings are worthless. With findings of questionable or
doubtful validity, there is nothing of value to generalize.
Generalizability plays a subordinate role and, in fact, should
not even surface until firm establishment of validity. Often it
is left to the reader to assume the onus of assessment of
generalizability and of whether findings can be extrapolated
to other populations.

METHODOLOGY AND OBSERVATIONS

In the reporting of research results, clarity in the definitions
of the terms and measurements made has great importance.
The more clearly the authors (or we as potential researchers)
define the terms, including diagnostic criteria, measurements
made, and the criteria of outcome, the more likely it is that
we, the readers, can interpret the findings correctly and gain
a proper perspective. For instance, in the field of invasive
catheter-related infection, terms such as ``colonization,’‘
``contamination,’‘ and ``infection of the catheter’‘ abound.
Authors often use these terms differently, leading to great
difficulty in interpretation and synthesis of results from
different studies. Furthermore, a ``positive culture’‘ may
represent different bacteriologic methodologies: some
authors use a semiquantitative culture of an intracutaneous
catheter segment, (9) whereas others use blood cultures

aspirated through the catheter. (10) Clearly, results from one

methodology may not be comparable to another, and
interpretations based on differing methodologies may lead to
different conclusions.

We must also try to evaluate the methods of classification or
of measurement. The essential question is to assess whether
inconsistencies in observation or evaluation could have
sufficient impact to influence materially the results of the
study. We also must try to evaluate the reliability and
reproducibility of the observations. This is more difficult to
assess. Frequently some clues inform the reader of the
author’s concern with and awareness of reproducibility and
reliability. When a subjective element enters into an
assessment, an author often refers to and sometimes provides
data on the results of evaluations by independent observers
and their degree of agreement. Interrater reliability would
refer to the ability of two or more independent raters to make
the same observations. Intrarater reliability would refer to an
observation made by the same rater over two or more
different times. With respect to abstracting information from
charts, interrater and intrarater reliability is usually in the
range of only 80% to 90%. An author who devotes some
attention to issues concerning measurement or laboratory
error would seemingly be cognizant of the importance of
reproducibility and reliability. It is well to be suspicious of
results from a study that seems entirely devoid of concern
with these elements, especially if some subjective element is
clearly involved in either diagnosis, observation, or
assessment of outcome.

PRESENTATION OF FINDINGS OR RESULTS

Authors must walk the fine line of clear and concise data
presentation in the Results section without editorializing or
drawing conclusions from the data they presented.
Remember, the facts should be able to speak for themselves.
The author must still detour into enough necessary detail for
the reader to judge the importance of the data. Important
findings require proper documentation. If a small number of
patients are presented, a table listing the important
demographic characteristic is useful so that the reader has a
clear understanding of the population studied.

It is surprising how often numerical inconsistencies are
contained within papers published in even the most reputable
medical journals. This may be due, in part, to the many
drafts and revisions compounded by textual proofreading,
computational and tabular proofreading, and other processes.
Because of the frequency of these errors, the reader may
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wish to use some quick checks: columns and rows should
add up to their indicated totals; percentages of mutually
exclusive categories should add up to 100%; numbers in
tables and figures should agree with those in the text; and
totals in various tables describing the same population
should agree. With the ubiquitous presence of hand-held
calculators and personal computers, we can even run some
of our own statistical tests, especially when the reported
results appear incompatible with our quick mental
assessment or even personal bias!

Clarity and precision are important criteria to judge the
overall scientific validity of an article. Assessments,
comparisons, and judgments belong in the Discussion
section. However, when these are enthusiastically included
in the Results section, they strongly suggest bias in the
author’s approach. Strictly speaking, an investigator should
undertake an analytic study when he or she can
wholeheartedly support affirmation or rejection of the
hypothesis under test. Thus, inclusion of subjective opinions
(``markedly improved outcome’‘) in the Results section may
be a subtle indication that the investigator performed the
study to confirm his or her preexisting personal view.

DATA ANALYSIS

In reality, the first question we, as readers, should ask is
``Are the data worthy of statistical analysis?’‘ We must then
examine the methods of statistical analysis to determine
whether they were appropriate to the source and nature of
the data and whether the analysis was correctly performed
and interpreted. These questions are difficult to answer.
However, we recognize that this is an entire field to itself for
which this chapter should serve as a stimulus to pursue more
vigorous study.

One of the first issues that should cross the reader’s mind is
to ask whether the observed and reported finding could be
due simply to chance, the luck of the draw, or sampling
variation. There is an arsenal of statistical methodology
available ranging from simple (e.g., t-test, chi-square test) to
sophisticated (multiple logistic regression, Cox proportional
hazards model) to examine the role of chance in the analysis
of study results. Each medical reader may not have sufficient
expertise to assess whether the investigators have chosen
their methodology appropriately and have correctly
performed the statistical analyses. We may hope that the
journal’s peer review process will have included some form
of assessment of the statistical aspects of the paper. Until we,
the readers, learn enough, we must solicit expert

biostatistical assistance. However, there are three points to
remember. First, it is the author’s responsibility to provide
the reader with information on the specific statistical
analysis used in the assessment of the role of chance.
Second, whatever the level of significance reported, no
matter how small the p value is, we can never rule out
chance with certainty. An exceedingly small p value (1
instance in 1000) denotes that chance is a most unlikely
explanation of the result, but there remains the possibility,
although unlikely, that this is indeed that one instance in
1000. The third point is that a statistically significant result
is not necessarily important or even indicative of a real
effect, only that an effect of chance has been ruled out with
some reasonable certainty. Often we must apply context or
perspective to the author’s work. We have discussed the
importance of reliability and reproducibility.

As clinicians, we know that measurements of pulmonary
artery occlusion pressure (PAOP) differ among observers.
For instance, estimation of PAOP from a visual inspection of
the oscilloscope tracing may be 3 - 4 mmHg different from
the results calculated electronically and displayed in digital
form on the monitor. In reviewing the effects of a drug,
however, some investigators may interpret a change of the
same magnitude (3---4 mm Hg) as an ``effect’‘ of the
therapy. Thus, in addition to deciding whether a particular
result is ``statistically significant,’‘ that is, if it represents a
real event (or is due to chance), we must decide whether it
has any real clinical, biologic meaning.

Furthermore, in our interpretation of study results we must,
with reasonable certainty, rule out the possibility of bias and
confounding. A result may be highly significant statistically
but the study design and conduct could lead to a
substantially biased result, or there may be some other
related variable that also explains statistically significant
results.

Confounding refers to effects of one or more related
variables. In its strict epidemiologic definition, a
confounding variable is one that is associated with both the
``exposure’‘ or independent variable and with the
``outcome’‘ or dependent variable under study. For example,
in an observational study that compared the mortality
experience of two modalities of treatment for head injuries,
an obvious ``confounding’‘ variable would be the severity of
the injury. Clearly, the severity of the injury relates to the
dependent variable under study--mortality. The injury
severity, however, may also have an association with the
independent variable--the choice of the particular modality
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of treatment. Thus, any finding of a difference in mortality
between modalities of treatment, no matter how statistically
significant the difference is, might be explained by the
confounding effects of the severity of injury.

The important point is to judge whether the authors have
considered all the pertinent known confounding variables in
their analyses and have taken proper steps to account for
their effects. The reader, without substantive knowledge of
the particular field of study, may be unable to delineate what
pertinent potential confounding variables should have been
considered. We (authors and readers) must cautiously
proceed with forming conclusions.

Bias refers to a systematic departure from the truth. Bias
may exist in many forms, and many statistical and
epidemiologic adjectives can precede the word ``bias’‘ to
denote some specific hazard or snag that can lead to a
departure from the truth. Sackett provides a useful
compendium of the various biases that lurk to ensnare the
unwary investigator, as well as the unwary reader, in the
conduct of biomedical research. (11) For our purposes, we

shall use the three adjectives: selection, observation, and
analysis.

Selection bias refers to how subjects got into the study. Is
the manner of selection of persons for study such that the
study will result in substantial distortion of the truth? As a
simple example, consider a study to compare outcome of
surgery in patients who agree and volunteer to undergo the
operation with those who refuse. Those who choose surgery
may be better operative risks (at least from their own
perception) probably with less co-morbid disease than that
found in the nonoperated group. Of course, other factors
may have influenced the other group to refuse surgery. Still,
the difference in the outcome of surgery might be more
likely to result from the selective nature of the groups rather
than from any real effect of the surgical procedure.

Observation bias refers to the methodology for handling and
evaluating subjects during the course of the study. If a
therapeutic intervention group receives more attention, more
supportive therapy, and more intense scrutiny than a control
group, an observed difference in outcome might more likely
be explained by observation bias rather than by any real
effects of the intervention. Retrospective studies are
particularly prone to observation bias.

Analysis bias refers to fallacies that exist in the choice of
statistical methods to analyze data. An example is the

``average-age-at-death’‘ fallacy. Calculation of average-age-
at-death among decedents does not measure longevity; it
reflects mainly the age composition of the total members of
the groups, mostly those who are alive. For example,
consider a newspaper report of a study that compared the
average age at death of U.S. professional football players
with professional baseball players. (12) The report stated that

football players died, on average, 7 years earlier than
baseball players. It would be erroneous to conclude that this
differential reflects the more hazardous and traumatic
aspects of professional football compared with professional
baseball. The fact of the matter is that professional football
is a much newer sport (dating from the mid-1920s) than
professional baseball, dating from the 1860s. Consequently,
the total group of professional baseball players is
considerably older than the total group of professional
football players. As an extreme example of this average-age-
at-death bias, consider the result anticipated in a comparison
of the average-age-at-death in a children’s hospital with that
in a retirement community hospital.

When, in the assessment of a study, we can rule out with
reasonable certainty that the finding is not due to chance,
bias, or confounding, we are well on the road to determining
a real and meaningful effect.

Finally, it is important to emphasize that the interpretation of
``statistical significance’‘ does not in and of itself connote
medical or biologic importance. Correlation and regression
illustrate this distinction and the misinterpretation that often
occurs. Correlations are used to describe the degree of
association between independent variables, such as blood
pressure and age. With regression, this implies that we can
choose one variable as dependent and one (or more) as
independent. With regression, our concern is the relationship
between an independent and dependent variable, namely,
what happens to the dependent variable as we alter the
independent variable. We use the linear regression equation,
Y = a + bx, to predict values of the dependent variable Y
from the independent variable, X, where b is the slope of the
regression line and a is the intercept. Both correlation and
regression may be presented familiarly as a scatter diagram
and usually involve some analysis of the ``statistical
significance’‘ of this relationship. The relation of a
correlation coefficient in the case of a perfect linear
relationship would yield a value of 1. Correlation
coefficients of 0.5 or less might achieve ``statistical
significance’‘ at a p value of less than 0.001, particularly
when the sample size is large, (i.e., there are a large number
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of data points). The square of the correlation coefficient (and
multiplication by 100) indicates the percentage of the
variance of the dependent variable explained by the variance
in the independent variable. Given a regression coefficient of
0.5, 25% of the dependent variable’s variance would be
explained by changes in the independent variable, although
75% remains unexplained. This may be a highly statistically
significant relationship, with, say, p <lt> 0.001; that is, there
is a likelihood of less than 1 in 1000 that this has occurred
by chance. Many authors and readers do not understand
clearly the separation of the statistical reliability of the
relationship and the importance of the statistical relationship.
They often place a high weight of importance on
relationships of minor causal significance (low r value) only
because it is highly unlikely to be due to chance (low p
value). To illustrate this point, some years ago the
hemodynamic and respiratory data for numerous disparate
patients were combined and subjected to regression analysis.
(13)

Venous oxygen content and intrapulmonary shunt had a
statistically significant relation (p  0.01) with an r value of
0.46. Such a low value indicates that the individual data
points are like a scatter diagram Therefore, other factors
must have an even greater weight to explain the other 79%
percentage of variance (r = 0.46, r2 = 0.21, or 21% of
variance). Obviously, the degree of pulmonary disease in
this instance would have the greatest effect in determining
the intrapulmonary shunt. Thus, there is a weak though
causal link between the two variables (low r value) and a
strong likelihood that there is a relationship, that is, that the
result was not due to chance (low p value). The problem
occurs when we or other authors are searching for a
relationship and infer an important causal physiologic
relationship based on ``statistical significance.’‘ Thus, we
must remember that the p value, the significance of the
statistical result, reflects merely the likelihood of chance at
the level specified rather than the precision of the result; a
lower p value, then, does not make the result more
biologically important or clinically ``significant.’‘

DISCUSSION AND CONCLUSIONS

In the Discussion section, the author can attempt to provide
an interpretation of findings. Here the author can attach
clinical relevance to the reported statistically significant
findings. The findings may be compared with those of other
studies and interpretations. Possible explanations for results
can be postulated and differences from other reports in the
literature explained. One would hope that the author bases

the conclusions on the findings. This is not always the case.
When we discuss the results, we should consider whether
they have any meaning in the real world of bedside practice.
A ``significant’‘ but relatively small difference in cardiac
performance discovered only in carefully controlled
circumstances has little resemblance to the constantly
changing status of the critically ill patient in whom such a
finding may not have any real import. We must ask
ourselves whether the demonstrated result is important in
influencing or directing bedside practice. We must retain our
skepticism and use it to balance enthusiasm.

We will discuss later the concept of power relating to the
necessary size of the sample. Authors who conclude that
results would have been statistically significant if only a
larger sample had been available display their lack of
foresight and preparation; clearly, the time to discover the
proper sample size is at the outset, the study planning phase.
Rather, it would be refreshing to encounter conclusions that
forthrightly admitted that the hypothesis was incorrect, that
the study showed that therapy did not lead to improvement,
or that the investigator headed off on the wrong track.
``Negative reports’‘ of this sort will prevent other
investigators from pursuing ideas that turn out to be flawed
and can also serve to direct investigators, including
themselves, along more fruitful pathways.

The reporting of negative studies has recently been
addressed from an editorial standpoint. (14) Angell states, ``...

it is widely believed that reports of negative studies are less
likely to be published than those of positive studies and
some data have been put forth to support this belief ... it is
assumed that editors and reviewers are biased against
negative studies, considering them less inherently interesting
than positive studies. However, a bias against publishing
negative studies would distort the scientific literature.’‘
Although she believes that the New England Journal of
Medicine publishes fewer negative reports than positive
ones, it is not a matter of policy. She asks, ``Does it deal
with an important question? Is the information new and
interesting? Was the study well done? ... We feel a particular
obligation to publish a negative study when it contradicts an
earlier study we have published and is of a similar or
superior quality. When a good study addresses an important
question, the answer is interesting and the work deserves
publication whether the result is positive or negative.’‘14

Finally, we should consider whether the conclusions are
relevant to the questions posed by the investigators. Far too
many papers seem to begin with ``unwarranted
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assumptions’‘ in the introduction, end with ``foregone
conclusions’‘ in the discussion, and contain in between a
mass of barely relevant data. If we care to spend the time
necessary to review published papers and, in particular, to do
the preparation necessary before we embark on our own
clinical investigations, such discouraging assessments will
occur much less frequently than they now do.

ABSTRACT OR SUMMARY

Although we know that we should spend time in analyzing
the medical literature, it is quite clear that, given the
pressures of everyday life and the journals that appear with
seemingly increasing frequency on our desks each month,
we are often tempted to read only the title and the abstract.
One final caveat: there may be important disparities among
the results, discussion, and abstract. One memorable paper
compared two forms of fluid resuscitation. Three patients in
one group had been given from two to three times the
amount specified in the protocol. With exclusion of these
patients properly in the data analysis, as noted in the results
section, there were no differences between the two groups.
With inclusion of patients with protocol violations, there was
a ``statistically significant’‘ difference. The abstract cited the
``statistically significant’‘ analysis without any reference to
the patients who should have been excluded. The authors’
conclusion of a statistically significant difference in
treatment modalities was, in fact, denied by their own
results. If you are in a hurry, do not just read the abstract and
move on, come back and read the article properly when you
have enough time.

FUNDAMENTALS OF BIOSTATISTICS IN
MEDICAL RESEARCH

This section is intended to present some of the fundamentals
of descriptive statistics and an introduction to inferential
statistics primarily to alert the readers to certain important
caveats in the interpretation of results of statistical analyses.
The author readily acknowledges the limitations of the
fundamentals presented here. However, I hope that I will
stimulate the reader both to seek expert assistance initially
and to pursue further study.

Two distinctive components to statistical methods are

The main contemporary interest in statistics for clinical
research is inferential statistics. This leads to the tests of
significance, p values, and confidence limits that pervade the
medical literature.

DESCRIPTIVE STATISTICS

1) TYPES OF DATA

We encounter two major classes of data: quantitative and
categorical. Quantitative data deal with measured quantities
such as age, blood pressure, or arterial or oxygen tension.
Quantitative data may be subdivided into discrete when only
certain values are possible such as the number of patients
currently in the ICU or continuous when any value is
possible. An example is serum sodium values which could
be reported as whole numbers such as 140 meQ/l or in
decimals; 140.6 meQ/l, depending on the accuracy of the
measuring instrument. Categorical data deal with attributes
such as living or dead, hypertension or not, blood type.
Similarly, categorical or qualitative variables may be
subdivided into ordinal and nominal categories. The
foregoing examples such as living or dead or blood type are
nominal or named variables. Yes and no categories such as
the presence of hypertension or not may be called
dichotomous. Ordinal variables consist of numbers, such as a
ranking scale for pain. Because these are subjective
assessments rather than objective measurements, they are not
considered continuous quantitative variables.

2) FOURFOLD TABLE FOR QUANTAL DATA

Many medical investigations involve the comparison of two
groups: a ``study group’‘ and a ``comparison group.’‘ When
the data are categorical, the fourfold or 2  2 table is a
convenient device for summarizing the results. The fourfold
table has two columns, corresponding to the study and
comparison groups, and two rows, corresponding to the
dichotomous data collected (e.g., success or failure, live or
die, respond or not respond). The four cells in the body of
the table provide the study results.

The obvious descriptive measure with quantal data is the
percentage with the attribute. From a fourfold table, one
wishes to compare the percentages with the attribute in the
study and comparison groups. For simplicity, we will choose
examples from one study to illustrate various points.6 The
study design consisted of randomizing patients into groups
with two different end points for the titration of PEEP. In
group I, the authors used 5 cm H2O PEEP to maintain PaO2
greater than 65 mm Hg at an inspired oxygen fraction (FIO2)
of 0.45. If PaO2 fell below this level, PEEP was titrated until
PaO2 rose to the treatment goal, 65 mm Hg. In group II, the
authors increased PEEP until physiologic shunt was reduced
to less than 0.2. The authors compared the two groups for
outcome and resources used: 6 (33%) of 18 patients in group
I died; 5 (25%) of 20 patients in group II died. This can be
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displayed as a fourfold table.

As we shall see later, depending on the situation, one may
wish to compare the percentages by examining their
difference, their ratio, or, in epidemiology, their odds ratio.
Authors should always report the numbers used to calculate
percentages. In fact many journals and abstract rules require
that the basic data be reported.

3) DESCRIPTIVE MEASURES FOR
QUANTITATIVE DATA

The two descriptive characteristics of prime importance are
location and spread.

For location, the most common measures used are the mean
(arithmetic average), median (middlemost value), and mode
(most frequently occurring). For purposes of statistical
inference, the mean and median are most frequently used.
The mode is rarely used in clinical research.

For spread, the most obvious is the range (highest minus
lowest), but it has limited use for inference. The measure of
spread ubiquitous in research is the standard deviation (SD),
defined as

SD =__(x  x)2/n  1

A convention many investigators follow with studies
involving quantitative data is to summarize results as mean
SD.

WARNING

There is another convention that involves expression of
results as mean  standard error (SE) where SE is some other
quantity (we shall discuss this later). The author’s onus in a
medical paper is to indicate whether the number following
the  is SD or SE.

4) NORMAL OR GAUSSIAN DISTRIBUTION

The normal or gaussian distribution is a theoretical
mathematical curve (i.e., one can write an equation for it)
that has particular importance in statistical work. It has the
familiar bell-shaped appearance. The distribution can be
described entirely by its mean and SD.

Empirically, the distribution of many quantitative
measurements tends to approximate a normal distribution in
shape (e.g., weight, examination scores, IQs).

Particular properties of the normal distribution are that its

Unfortunately, many populations in critical care are not

normal in the sense that the distribution of many quantitative
measurements does not tend to approximate a Gaussian
distribution. For instance, in any clinical series, a few
patients tend to remain in the hospital far longer and tend to
skew the distribution to the right on a scale of increasing
duration of hospital stay. Since hospital charges are
proportional to the time spent in the hospital, one might
anticipate that the distribution of hospital charges would not
be normal. In the PEEP study, the hospital charges in group I
patients were $32,000  $18,000 (mean  SD).6 Clearly,
hospital charges do not approximate a normal distribution. If
we had naively calculated mean  2 to encompass 95% of the
patients, we would see that the lowest value is an impossible
negative charge, $4000. Whether or not data under study
follow an approximately normal distribution can influence
the choice of method for analysis. In the above example, to
compare charges in the two study groups--rather than use the
t-test, which has an implicit assumption that the data follow
an approximate normal distribution, the Mann---Whitney U
test was used, which does not entail any assumption
regarding the shape of the distribution of the data. With the
wide availability of statistical computer packages, one can
readily calculate means and standard deviations, regardless
of whether the data are normally distributed (even with
ordinal data such as ranking scales). If all of the data are of
similar sign, (that is all positive or all negative) and the
standard deviation is greater than half of the mean, the data
clearly will not be normally distributed. The median and
range can be used as descriptive statistics and, in addition to
the Mann-Whitney U test for testing differences between
two unpaired treatments, other nonparametric tests of
significance are available. These include the Wilcoxon
signed rank test which tests for differences between two
paired treatments, the Kruskal-Wallis analysis of variance
(see below) for testing differences between more than two
treatments, and the Spearman rank correlation which can be
used to test the strength of association between two
variables.

The more important use of the normal distribution in
statistics is in the process of statistical inference, which we
are now ready to discuss.

STATISTICAL INFERENCE

1) BACKGROUND AND OBJECTIVES

The ultimate result of statistical tests of significance is
presentation in a report of a ``p value’‘ and a claim that
findings were ``statistically significant’‘ or ``not statistically
significant.’‘ These claims result from a series of numerical
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calculations. In today’s world of electronic aids we can
deemphasize the calculation ritual and emphasize the
underlying rationale for the statistical test of significance and
the proper interpretation of its result.

We will focus on the comparison of two groups of
observations: a study group and a comparison group. The
data under consideration could be categorical or quantitative.
In fact, the nature of the data involved in the comparison
dictates the statistical methods for analysis. Categorical data
lead to chi-square tests (sometimes cited with Yates’
correction), whereas quantitative data lead to t-tests (or, as
occur alternatively, nonparametric Wilcoxon rank tests or
the Mann---Whitney test).

2) CONCEPT OF SAMPLING VARIATIONS AND
DEFINITION OF SE

Basic to statistical inference is the underlying concept of
sampling variation, namely, that any quantity calculated in a
sample (proportion, mean, median, SD, and so on) will differ
with different samples (of the same size) from an underlying
population. The variation in this quantity from sample to
sample is sampling variation.

For example, consider quantal data and calculation in a
sample of the proportion of persons who have the attribute
under study. Think of many repeat samples of the same size
from this population with, in each sample, determination of
the proportion with the attribute. The variation among the
proportions in the various repeat samples is the sampling
variation of a proportion.

As a second example, consider quantitative data and the
calculation of a mean for the sample. Think of many repeat
samples of the same size from this population and, with each
sample, determination of the mean. The variation among
means in the repeat samples is the sampling variation of a
mean.

If we now consider use of the SD to describe variation, we
come to the definition of SE, the SD for sampling variation
of some quantity (proportion, mean, and so on) calculated in
each of the repeat samples. For our first example, the SD
among proportions for repeat samples of the same size is the
SE of a proportion. For our second example, the SD among
means for repeat samples of the same size is the SE of a
mean.

Finally, without going through the laborious process of
empirically obtaining repeat samples, statistical theory
indicates that a for proportions, the SE of a proportion (SEp)

is

SEp = _P(1  P)/n

where n = sample size and P = proportion in the population
with the attribute; and b for means, the SE of a mean (SE) is

SEx = s/n

where n = sample size and s = SD in the population.

Notes. When the SD (s) in the entire population is unknown,
which is almost always the case, one uses the SD in the
sample, s, as an estimate of s. Thus,

est SEx = s/_n

The choice of mean  SD or mean  SE depends on the
purported use of the data. If the intention is to indicate
variation of individual values about a mean, the choice is
mean| SD. If the intention is to indicate sampling variation in
many different samples or stability of the mean and to
conduct a statistical inference regarding the mean, then the
choice is mean  SE.

The calculation of SE results in a smaller number than SD
because it is SD divided by the square root of the sample
size. Sometimes, however, we will find mean  SE used to
indicate variation of individual values about a mean in a
single sample even though the choice should be mean  SD.
This could be a mistake in transforming or selecting the data,
but another inference is that the authors believe this
somehow ``tightens’‘ the data by appearing to mask the
actual variation of individual values in the sample.

An amazing but mathematically provable feature is that if a
distribution of the means or proportions from repeat samples
of the same size is plotted, the distribution tends to follow a
normal or Gaussian curve. The mathematical derivation of
this is called the Central Limit Theorem. The fact that
sampling distributions of a mean and a proportion are
normal is the reason why the normal distribution is the basis
for many of the methods of statistical inference we
encounter in research.

3) SPECIFICATIONS FOR A TEST OF
SIGNIFICANCE

Three specifications are necessary to perform a test of
significance. One must specify a null hypothesis, set a
significance level, and determine whether one wishes to
conduct a one- or two-sided test.
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NULL HYPOTHESIS

The null hypothesis generally states that there is no
difference between two groups or no effect of treatment. In
the comparison of two groups with categorical data, the null
hypothesis concerns the proportions with the attributes in the
two larger ``study’‘ and ``comparison’‘ populations from
which the study data came. The obvious null hypothesis is
that the proportions with the attribute are the same in the
``study’‘ and ``comparison’‘ populations. The PEEP study
compared mortality rates in the two groups.6 The null
hypothesis states that, in the underlying populations from
which these study samples come, there is no difference in
mortality rates.

For the comparison of two groups with the quantitative data,
the null hypothesis is that the means in the underlying study
and comparison populations are identical, or, alternatively,
that the difference in population means is zero.

SIGNIFICANCE LEVEL

As we shall see, the test of significance involves making a
decision under uncertainty and based on chance. Setting a
significance level is the arbitrary selection of a small enough
chance for making a choice. Convention in both medical and
nonmedical research dictates 0.05 or 5% and 0.01 or 1% as
the typical levels of significance. Choice of 5% indicates that
an event occurring only 1 time in 20 or less is sufficiently
rare to risk drawing a conclusion that excludes chance as a
likely explanation of what was observed. Choice of 1% is
more conservative and indicates that an event occurring only
1 time in 100 or less is sufficiently rare to risk drawing a
conclusion that excludes chance as a likely explanation of
what was observed.

How should we determine whether 5% or 1% or some other
value is a proper level of significance? Because this is an
arbitrary selection, a number of factors bear on this selection
process. For instance, if a particular form of treatment
carries a high risk of serious side-effects, we might choose a
level of 1%. On the other hand, if the disease has an
extremely high mortality rate, we might raise the level of
significance to 5%, allowing a greater possibility for chance
to have produced the results but not discarding a real result
based on too strict a criterion. If the problem addressed is
widespread and the proposed remedy simple and
inexpensive, we might elect a higher level of significance,
whereas an expensive, complicated, difficult-to-effect
modality of therapy might more properly be judged by a
lower significance level.

To refer again to the PEEP study, the chosen level of
significance was 0.05. The level of significance was chosen
because the mortality rate may have been considered high
(favoring a higher level), the therapy was simple, and neither
arm entailed higher charges or more complicated
interventions.

ONE- OR TWO-SIDED TEST

This pertains to the nature of the alternatives one wishes to
entertain in contrast to the null hypothesis. More
specifically, if in the comparison of two groups one
considers as alternatives to the null hypothesis only that the
population mean or proportion in the study group may be
higher than that in the comparison group, this is a one-sided
test. If, however, one considers the possibility that the
population mean or proportion in the study group may be
either higher or lower than that in the comparison group, this
is a two-sided test. In general, the two-sided test is the more
conservative. In trials, although one may have every
anticipation that the new therapy will perform better than the
standard, there is often the possibility that it may perform
worse. Hence, one would adapt the more conservative two-
sided test in such a situation.

If we are increasing PEEP to attempt to increase arterial
oxygen tension, we might analyze our results with a one-
sided test. If we chose a two-sided test, we entertain the
possibility that PEEP lowers the PO2. In practice, we chose
the more conservative two-sided test to compare mortality
rates in the two groups of the PEEP study.

4) RATIONALE FOR THE TEST OF
SIGNIFICANCE

Central to the application of statistical methods is the notion
that a study consists of a random sample from some
underlying population. One calculates a descriptive statistic
in the sample, a proportion (or rate or percentage) for
quantal data, and a mean for quantitative data. The inference
to be drawn concerns the respective statistic in the
underlying population, that is, the population proportion or
the population mean.

The situation we have prescribed then concerns two
populations: a ``study’‘ and ``comparison’‘ and two samples,
one from the study and one from the comparison population.
We further presume that with quantal data we have
calculated the sample proportion in each of our study and
comparison samples. In the PEEP example, the sample
proportions are 33.3% and 25.0%, respectively, in groups I
and II. With quantitative data we presume calculation of the
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sample mean in each of our study and comparison samples.

The rationale for the test of significance is that we presume
that the null hypothesis we have specified regarding the
population(s) is true. We then determine, using methods
based on the mathematical theory of probability, the chance
that we would obtain results in our sample(s) that were as
extreme as or more extreme than what we have actually
observed. If this chance is sufficiently small, then we claim
that the results obtained with our sample(s) are not
compatible with the specified null hypothesis and our study
has provided us evidence to refute the null hypothesis. This
is the meaning of statistically significant.

If the chance we determine is not sufficiently small, then we
claim that the results obtained with our sample(s) are indeed
compatible with the specified null hypothesis and our study
provides no evidence to refute the null hypothesis. This is
the meaning of not statistically significant.

By ``sufficiently small,’‘ we mean the chance we had
selected with our significance level specification, namely,
the conventional 5% or 1%.

Finally, if we determine the chance of extremities in only
one direction from the null hypothesis specification, we are
performing a one-sided test. If we determine the chance of
extremities in either direction from the null hypothesis
specification, we are performing a two-sided test.

Stated simply, the test of significance is an indication of
whether chance is a likely (not statistically significant) or an
unlikely (statistically significant) explanation of the
discrepancy between the stated null hypothesis and the
observed results in the study sample(s).

5) DISTINCTION BETWEEN PAIRED AND
INDEPENDENT SAMPLES FOR THE
COMPARISON OF TWO GROUPS

We need to distinguish between two different forms of
comparative studies: paired samples and independent
samples. Paired samples occur when each observation in the
study sample has, by the nature of the investigation, a
matching or paired observation in the comparison sample.
The most obvious paired situation is a ``before---after’‘
study or one in which the patient serves as his or her own
control. Sometimes investigators individually match subjects
on various characteristics (e.g., age, sex, race,
socioeconomic status) and conduct a paired sample study.

When, as described in the study methodology, there is no

evident individual matching of study with comparison
sample observations, the design is obviously independent
samples.

6) FOUR SITUATIONS FOR THE COMPARISON
OF TWO GROUPS

With two types of data (quantal and quantitative) and two
study designs (paired samples and independent samples), we
have four situations for the comparison of two groups.

7) EXAMPLE

To illustrate the above points, consider the PEEP study
discussed previously. Patients were randomized to one of
two study groups, with 18 assigned to group I and 20 to
group II. Among the various study outcomes investigated,
Consider a test of significance comparing mortality rates in
the two groups. A perusal of the Methods section of the
paper indicates no individual matching or pairing of patients
in the two groups; hence, we are dealing with independent
samples. The data for this particular comparison, ``Died’‘ or
``Did Not Die,’‘ are clearly categorical. Hence, our interest
is in comparison of proportions in independent samples,
which, indicates chi-square as an appropriate method of
statistical analysis.

Recall that we have stated previously that we are testing the
null hypothesis of no difference in mortality in the
underlying populations for the two interventions under
study. When we perform our test of significance we are
asking: if the null hypothesis is correct and there is no real
difference, how often by chance alone would we obtain a
mortality difference in samples of n = 18 in group I and n =
20 in group II of 33.3%  25.0% = 8.3% or something more
extreme? When we specified a two-tailed test, we stated our
interest in considering deviations as extreme or more
extreme in both directions from the null hypothesis value of
zero.

Following the calculation ritual for chi-square in
independent samples, we obtain a chi-square value (with use
of Yates’ correction and 1 df) of 0.04. From a table of the
chi-square distribution, this yields a probability (p value) of
0.84 or 84%. Having chosen a significance level of 5%--that
is, we considered 5% or 1 chance in 20 as sufficiently
infrequent--clearly 84% far exceeds 5%. Hence, the test of
significance concludes ``not statistically significant.’‘ In
other words, chance or sampling variation does indeed
constitute a plausible explanation for the observed difference
in mortality rates for the two study groups. Thus, on the
basis of the results of this study, we have no reason to doubt
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the null hypothesis. The observed difference in mortality
rates between the two study groups is well within the
possibility of chance variation.

The McMemar test is another type of Chi square analysis
which one can use to compare proportions in a before and
after determination on the same group of subjects, namely, a
paired sample of categorical data.

In addition to mortality rate, the PEEP study examined other
variables including number of days in the SICU, number of
days intubated, number of arterial and venous blood gas
determinations, number of inotropic or vasoactive drugs
administered, and frequency with which more than 5 cm
H2O PEEP was required to achieve the desired end points.
The first five variables involve quantitative data, and, for
each variable, the respective means and SDs for the 18
patients in group I and the 20 patients in group II were
calculated. In each instance, a test of significance was
conducted to compare the two group means. Since this is a
comparison of two means in independent samples, a relevant
calculation ritual is the independent samples t-test.

In each instance, the null hypothesis under test is that, in the
underlying population from which these study data came,
there is no difference in the means. Each test involved
choice of a 5% significance level and use of a two-sided test.
In each instance, the outcome of the test of significance was
``not significant’‘ (p  0.05).

Interpretation of these results is that in each of the five tests
comparing means, the results observed in the study samples
are indeed compatible with the null hypothesis statement
that, in the respective populations, there is no difference in
mean effects for each of these variables. In other words, if
each of the null hypotheses of no difference in means is true,
the results observed in the study sample, or something more
extreme in either direction from the null, could well have
occurred by chance or by sampling variation. Thus, on the
basis of these study results, the two interventions do not
differ with respect to mean effects for each of these
variables.

The final data item analyzed gives the percentage of patients
who required more than 5 cm H2O of PEEP to achieve the
desired end points. As with the mortality data, comparison of
the two groups on this variable entails a comparison of two
proportions in independent samples and entails the chi-
square test. Performing the same calculation ritual as with
the mortality data leads to a chi-square (with use of Yates’

correction and 1 df) of 15.6. This yields a p value of
0.00008, or, more roughly, p  0.0001 (i.e., less than a 1 in
10,000 chance). Here, too, the null hypothesis is equal
population frequency for the two interventions. The chosen
significance level is 5% (or 1 chance in 20), and a two-tailed
test was selected. Clearly, the p value we calculated, 1 in
10,000, is far below our chosen significance level, 1 in 20.
Hence, our results are ``statistically significant’‘ (p  0.05). In
other words, the sample results in this study are not
compatible with the null hypothesis of no difference in the
two interventions for this variable. The results we observed
are unlikely to have occurred by chance or sampling
variation alone. Thus, our study does provide sufficient
evidence to doubt or refute the null hypothesis that these two
interventions require the same frequency of use of more than
5 cm H2O of PEEP. We could state, ``Significantly more
patients in the group II intervention compared with group I
required more than 5 cm H2O of PEEP to achieve the
desired end-points (p  0.05).’‘ Alternatively, the previous
statement could appear with a parenthetical ``p  0.0001,’‘ or
even with the actual p value calculated, ``p = 0.00008.’‘ In
other words, this difference in sample rates, 27.8% in group
I and 95% in group II, is most unlikely to have occurred
purely by chance, and we can construe this as substantial
evidence in this study to refute the null hypothesis.

INTERPRETATION OF STUDY RESULTS

(1) ``MULTIPLE PEEKS’‘ PROBLEM: REPEAT
ANALYSES OF ACCUMULATING DATA

Worshipping at the shrine of the 5% significance level, an
interesting suggestion is to analyze accumulating data in a
study after every few observations and to stop the study as
soon as the cumulative data achieve statistical significance at
the 5% level. Statistically, this is an entirely fallacious
procedure. The actual significance level with this procedure
will not be 5% but something much higher, thus increasing
the likelihood that chance alone is responsible for the
``difference’‘ observed. Using conventional statistical tests
such as t-tests and chi-square, the actual significance level
will depend on the number of peeks or analyses performed
with the accumulating data. In fact, it can be shown
mathematically that even if the null hypothesis is exactly
true, the investigator will ultimately find a statistically
significant result although he or she may have to continue
obtaining observations and analyzing the cumulative results
for a long time.

If one wishes to take multiple peeks with repeat analyses of
data as they accumulate, one must use special statistical
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techniques (15) devised for this situation, namely, sequential

methods (see also reference 7, Chap. 8).

(2) ``MULTIPLE COMPARISONS’‘ PROBLEM:
MANY TESTS OF SIGNIFICANCE WITHIN A
SINGLE STUDY

With the ability to collect many measurements on a wide
variety of variables in a single study, and the availability of
computers to grind out the calculation rituals for tests of
significance, a study may involve a large number of tests of
significance and the reporting of their respective p values.

With many variables tested, their corresponding p values
require cautious interpretation. As we shall indicate a bit
later, one way to view the chosen significance level is to
consider it as the chance to make an incorrect decision and
reject a null hypothesis that is true. Thus, specification of a
5% significance level means that we are willing to risk a 5%
or 1 in 20 chance of coming to the wrong conclusion in our
analysis and rejecting the null hypothesis when it is true.
What this means is that among every 100 tests of
significance we encounter in which the null hypothesis
actually is true, five have resulted in the erroneous
conclusion of statistical significance.

Thus, if a study involves 100 tests of significance with
various data items, we would anticipate that 5% or five tests
would produce statistically significant results by chance
alone. The extreme in multiple statistical testing is to let the
statistical analysis drive the investigation. An investigator
may decide that rather than specify particular hypotheses for
testing, he or she will conduct a study collecting information
on as many variables as possible and then, from the tests of
significance for each variable, choose and report those
variables that turn out statistically significant at the 5%
level. Not only is this improper use of statistical methods,
but also it is poor science. It is often termed a ``fishing
expedition,’‘ but in reality it would be a poor study design
for a fishing trip as well--too much ocean and too few fish!

When a study does involve several statistical comparisons,
specific techniques are available for dealing with this
situation, namely, multiple comparisons procedures, which
can preserve the predetermined significance level for the
statistical testing. (16,17) Although, for illustrative purposes,

we did not use any multiple comparisons procedure,
certainly the PEEP study results would lend themselves to
consideration of a multiple comparisons procedure.

Thus far we have limited discussion to comparison of two

groups by means of t tests for quantitative data. If there are
more than two groups, the appropriate test would be the
analysis of variance, often abbreviated ANOVA. To
determine statistical significance, this test analyzes the
variance between groups and within groups. The null
hypothesis in this instance states that there are no differences
among any of the group means. However, if the null
hypothesis is rejected, and analysis reveals that a difference
is unlikely due to chance, ANOVA does not identify which
group or groups are different. One must perform additional
analysis. Again, most common statistical programs print the
subsequent multiple comparisons procedures as part of the
statistical results in the ANOVA package. Which test is
appropriate for your study or determining whether the
authors have used the appropriate test will require
consultation with a statistician or further study.

Often times, clinical studies entail measurements of response
of the variable under study over time in two or more
different groups. Here, repeated measures ANOVA is the
appropriate statistical test. For instance, we could use
repeated measures ANOVA to compare the effect of PEEP
on the 1st, 2nd and 3rd days of the study between the
“adequate oxygenation” and “minimal shunt” groups.

(3) PLAYING BY THE RULES OF THE GAME

We realize that the structure of statistical tests of
significance involves some rather arbitrary choices (such as
choice of a significance level) and some perhaps unrealistic
oversimplification in its dichotomization of the world (such
as ``significant’‘ or ``not significant’‘). If one has chosen
this hypothesis-testing framework for drawing inferences
from study findings, one should report results properly, with
correct terminology, according to the rules of the game and
without editorializing. Thus, within the framework, after one
has chosen a significance level, results are either
``significant’‘ or ``not significant’‘ at that chosen level. It is
customary to indicate the smallest significance level at
which that result would have been significant. For example,
although the 5% significance level was chosen for the test,
the calculated p value for comparison of percentage of
patients requiring more than 5 cm H2O of PEEP was 0.0008.
Hence, the results could be reported with one of the
following three notations: p  0.05, p  0.0001, p|= 0.0008.
What is irksome is when results are not significant at the
chosen level, but authors often write, ``There was a clear
trend toward significance’‘ or ``The findings suggest a
difference, but they did not achieve statistical significance.’‘
Clearly, results are or are not significant. The qualifications
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of ``a clear trend’‘ or ``suggest a difference’‘ constitute
unnecessary editorializing. Comments such as these, if made
it all, should appear in the Discussion section of a paper and
not in the Results. The astute reader is indeed wary of the
arbitrariness and limitations of the process of statistical
testing and does not need additional editorializing by the
authors as he or she assesses a study’s findings.

Another perspective on this is that deployment of tests of
significance according to the rules does mean that, say at a
chosen 5% significance level, a calculated p value of 0.047
is ``significant’‘ whereas nearly the same sample result that
leads to a calculated p value of 0.053 is ``not significant.’‘
The experienced researcher and reader are well aware of this
limitation and apparent paradox with tests of significance.
But, if one has chosen to play the game, one must play by
the rules and not hedge or qualify the reporting of the
findings.

The limitations and arbitrariness surrounding tests of
significance are reasons why many investigators, and many
biostatisticians, are shifting toward confidence limits for
reporting research results. Although the same principles of
statistical inference are involved in calculation and
interpretation of a confidence interval, it provides more
information than the mere reporting of a p value from a test
of significance.

TYPE I AND TYPE II ERRORS

With the use of statistical tests of significance to test
hypotheses, it is important to understand the two errors that
arise in the conclusions drawn:

1) TYPE I OR A ERROR

When we choose the 5% significance, we, alternatively,
have stated that we are willing to risk 5% chance of
erroneously rejecting a true null hypothesis (i.e., claiming
statistical significance when, in fact, the null hypothesis is
true). This incorrect decision or error is called the type I
error, a error, or error of the first kind.

(2) TYPE II OR ß ERROR

Obviously, the above definition implies that there is a
corresponding type II error, ß error, or error of the second
kind. In this situation, the null hypothesis is false, and some
alternative hypothesis regarding the population values
prevails. The incorrect conclusion we make is to fail to reject
the null hypothesis when, in fact, the null hypothesis is false.
In other words, ß or type II error is coming to the erroneous
conclusion ``not statistically significant’‘ when, in fact, the

null hypothesis is false and there really is a difference
between the study and comparison groups.

We, as readers and authors, must make some decisions with
respect to the possibility of introducing either type I or type
II errors. For instance, if a particular form of treatment is
hazardous and has life-threatening side-effects, we would
want to be sure that there is a true difference before rejecting
the null hypothesis. We may, therefore, choose a lower level
of significance (p value = 0.01 rather than p value = 0.05) to
make it less likely that the difference is a result of chance
alone. We have diminished the likelihood of introducing a
hazardous form of therapy based on results that, indeed,
were the outcome of chance. On the other hand, if a safe
form of treatment has a small therapeutic effect, we might
not wish to fall into a type II error, in other words, coming to
the erroneous conclusion that there was not a ``statistically
significant’‘ difference between the two groups when, in
fact, there was a true difference.

(3) POWER

Power of a statistical test is defined simply as the
complement of the ß or type II error, that is,

Power = 1  ß

Thus, the power of a statistical test refers to the chance of
correctly rejecting the null hypothesis when, in fact, the null
hypothesis is false.

PLANNING THE SAMPLE SIZE OF A STUDY

With the above definitions we have three important
quantities involved in a statistical test of significance:

Provision of any two of the above items will allow us to
determine the value of the third. For example, with
specification of (i) the sample size of the study and (ii) the a
error chosen for the null hypothesis, we can determine, for
any specific alternative hypothesis, the ß error, that is, the
chance of erroneously concluding ``not statistically
significant’‘ when, in fact, that specific alternative
hypothesis is true.

Of more use, perhaps, is that with specification of (ii) the a
error associated with the null hypothesis and (iii) the ß error
for some specific alternative hypothesis, we can then
determine n, the sample size needed for the study. For
comparative investigations, this means that an investigator
must provide an a error and a ß error for a specific difference
(usually called a clinically meaningful difference).
(Alternatively, rather than ß error, one could just as well
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frame the specification in terms of power, that is, the study is
planned to have a certain specified power for a specific
difference.)

The above is the rationale for the answer the statistician
provides to the question, ``How big a sample do I need?’‘
The investigator must specify the a and ß errors, have some
idea of the underlying variability in the measurements under
consideration (expected SD), and select a value to represent
a true difference between the experimental and control
groups.

The equation to calculate the size of the sample contains the
SD and the terms for the percentage point of a normal
distribution for a and ß errors in the numerator and the true
difference in the denominator. A higher specified level of
significance for each will result in a lower numerator and a
lower quotient or sample number. Thus, if we select an a or
ß error of 0.05 compared with 0.01, we will need a smaller
sample. On the other hand, if there is a greater variability in
the measurements, a large sample size will be necessary. The
sample size also depends on the value selected for a true
difference. To determine whether mortality rate is reduced
from 25% to 10% will take a smaller sample than an
anticipated reduction from 25% to 20%. If the existing
mortality rate is low (4%), therapy that would truly result in
halving the rate to 2% would require a study involving a
very large number of patients (for further details and
methods of calculation, see reference 7, pp 142---146).

Consider the PEEP study we used earlier as an example to
illustrate tests of significance. Consider the mortality data in
which the mortality rate in both groups combined is roughly
30%. Suppose we plan some new intervention that we
anticipate will reduce mortality. How large a comparative
study do we need to test this new intervention (study group)
against conventional therapy (comparison group)?

Clearly, the null hypothesis is that mortality in the study and
that in the comparison groups are identical. When
confronted with the statistical question regarding type I
error, suppose we indicate that we plan to perform a two-
sided test at the 5% level. We chose a two-sided test because
even though we have every anticipation that our new
intervention will reduce mortality, there is some possibility
that it might result in an increase in mortality. If such an
adverse consequence did occur, we certainly would want to
be able to detect such a possibility in our analysis. Hence,
we have opted for the more conservative two-sided test.
When we chose the 5% significance level or a = 0.05, we

have specified our type I error; that is, we have indicated that
we wish a 5% or 1 in 20 chance of erroneously rejecting the
null hypothesis, namely, erroneously claiming a
``statistically significant’‘ difference in our study when, in
fact, there is no real difference in mortality.

We now have to specify our type II error. As a first step, we
must choose what difference in mortality we consider
clinically important. Suppose we choose a difference of
10%. This means that if, in fact, our new intervention
reduces mortality by 10%, say, from 30% to 20%, we deem
this as a clinically important effect that we wish to detect. In
fact, when pressed, we might state that we wish to have a
10% type II error for this effect. In other words, we wish to
have only a 10% or 1 in 10 chance of erroneously failing to
reject the null hypothesis when this magnitude of effect
exists, that is, if there is, in reality, an effect of reduction of
mortality by 10% (i.e., absolute 10% difference), we wish
our study to have only 1 chance in 10 of arriving at the
erroneous conclusion of ``no significant difference’‘ in
mortality.

We could, alternatively, have made the above specification
in terms of statistical power rather than type II error. We
would then say that if the real reduction in mortality is 10%
(i.e., absolute 10% difference), we wish our study to have
90% power to detect such a difference. In other words, we
wish to have a study such that there are 9 chances in 10 that
our results will lead to the correct conclusion of
``statistically significant difference’‘ when, in fact, a true
difference in mortality of this magnitude exists.

With these specifications, calculations reveal that we need a
sample size of 420 patients in each of the study and
comparison groups or a total of 840 patients in the
investigation. If this number is beyond the resources
available to us, we would have to relinquish something in
our error specifications. Our sample size determination
would yield a smaller number if we were to increase a error
(e.g., from 5% to 10%) or increase our ß error (e.g., from
10% to 20%) or choose a larger clinically meaningful
minimum difference in mortality rate (e.g., 15% instead of
10%).

Another approach to the collective bargaining between
biostatistician and clinical investigator in determination of
sample size is for the investigator to indicate to the
biostatistician the maximum number of patients that he or
she can anticipate for the study. The biostatistician can then
determine, for various alternative choices of ``clinically
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meaningful differences,’‘ just what statistical power the
study would have to determine such differences.

ANALYZING DIAGNOSTIC TESTS

Contempory medical literature abounds with descriptions of
attributes of new diagnostic tests such as sensitivity and
specificity. The definitions and calcuation of these terms can
be derived from a 2 X 2 table.

ATTRIBUTE

Present Absent

TEST POSITIVE a b

TEST NEGATIVE c d

Sensitivity is the ability of a test to detect a disease and is
calculated by dividing the true positives, the number of
times the test is positive when the attribute is present, (a), by
the same number plus the false negatives, the number of
times the test is negative when the condition is present, (c).
The forumla then is a/(a + c). Specificity refers to the test
being negative when the disease is not present. It can be
calculated by taking the true negatives, the number of times
that the test is negative in the absence of disease, (d), and
dividing it by the same quantity plus b or false positives, the
test is positive although the attribute is absent. The formula
for specificity thus is d/(d + b). Two other commonly used
terms are positive and negative predictive values. The
positive predictive value is the chance of having the attribute
if the test is positive. This is calculated as the ratio of the
true positives (a) in which the test is positive when the
attribute is present and the sum of all situations in which the
test is positive, which includes true positives (a) and false
positives (b). The formula for positive predictive value then
is a/(a + b). Negative predictive value states the accuracy of
the test to exclude the attribute if the test is negative. It is
calculated from the ratio of true negatives (d) and all
negative test results, (d + c), both true and false negatives.
The formula for negative predictive value is d/(d + c).

CONFIDENCE INTERVALS (LIMITS)

Confidence intervals are alternatives to tests of significance
for drawing inferences regarding populations from
observations in a sample. They are based on the same
considerations of sampling variation as discussed with tests
of significance. From results in a sample, a calculation ritual
leads to determination of confidence limits and the
confidence interval. The interval gives a range of values
within which the true underlying population value lies. If a

95% confidence interval is calculated, the chance is 95% or
19 in 20 that the limits calculated embrace the true
population value; the smaller the sample size, the wider the
confidence interval.

For the comparison of two groups, we can calculate
confidence intervals on the difference in percentages or in
means. These, as indicated above, provide an interval within
which the true difference in population proportions or means
lies.

Again, consider the PEEP study as an illustration. With
regard to mortality, the difference observed in the study was
33.3%  25.0% = 8.3%. Calculation of 95% confidence limits
on this difference yields  20.6% to 37.2%. Thus, based on
our sample results, we state with 95% confidence that in the
population from which the study samples came, the
difference in mortality rates is somewhere between  21%
(i.e., an absolute difference in mortality rate 21% higher in
group II than in group I) and + 37% (i.e., an absolute
difference in mortality rate 37% higher in group I than in
group II). The term ``95% confidence’‘ means that when we
state that the true population difference is somewhere
between  21% to + 37%, there is a 95% or 19 in 20 chance
that these limits do embrace the true population difference;
there is a 5% or 1 in 20 chance that the true population
difference is outside these limits.

Clearly, the limits calculated above are wide due to the small
sample sizes involved, namely, about 20 patients per group.
Confidence limits are sensitive to sample size and shrink as
sample size increases. For example, if these same sample
results, namely, 33.3% and 25%, had arisen from a study
quintupled in size, that is, with 100 patients in each of
groups I and II, 95% confidence limits on the true population
difference in percentage mortality would be  4.2% to +
20.9%.

Confidence limits are compatible with the results of tests of
significance. For example, if 95% confidence limits on the
difference in two proportions or means include zero, then a
two-tailed test at the 5% level would yield the result ``not
statistically significant.’‘ If the 95% confidence limits does
not include zero, then the two-tailed test at the 5% level
would yield the result ``statistically significant.’‘ In the
PEEP study just mentioned, the 95% confidence intervals (
21% to + 37%) included zero, which is compatible with the
test result of ``no significant difference’‘ in mortality rates.

If, in a comparative study of proportions, one has interest in
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the ratio of the two proportions (i.e., relative risk), the
confidence interval on the ratio can be calculated. If, for
example, a 95% confidence interval of the ratio of two rates
includes 1, there is no significant increase in relative risk,
tested by a two-tailed test at the 5% level. If 1 is outside the
95% confidence interval, there is a significant increase in
relative risk, with a two-tailed test at the 5% level.

One often encounters calculation of the odds ratio to give an
estimate of relative risk, particularly in case-control studies.
It can be calculated from a 2 X 2 contingency table. The
ratio is calculated from the product of a (treatment used in
cases) and d (treatment not used in controls) divided by b
(treatment not used in cases) times c (treatment used in
controls). The formula then is ad/bc.

Confidence intervals are gaining in popularity in clinical
research. Particularly for epidemiologic studies, they provide
more useful information than corresponding tests of
significance.

However, often authors do not calculate confidence
intervals. This is especially important when no occurrences
of a particular outcome have occurred in a relatively small
study group. It is erroneous to extrapolate this finding of
zero responses to the general population. It has been shown
that with sample sizes greater than 30, at a p = 0.05, ``... if
none of n patients shows the event about which we are
concerned, we can be 95% confident that the chance of this
event is at most 3 in n.’‘ (18 ) For instance, in a study of in-

hospital cardiopulmonary resuscitation, Taffet and
colleagues (19) reported that none of the n = 68 patients older

than age 70 who received CPR survived until discharge.
Although the authors did not recommend setting age limits
for CPR, one fears an inference of ``hopelessness’‘ from the
study of of CPR in patients over the age of 70. Using the
rule of 3/n, a one-sided upper 95% confidence limit is that
we might reasonably expect up to 4.4% of patients over the
age of 70 to survive. We should then discuss futility as a
condition for withholding CPR with this latter figure in mind
as a reasonable upper limit. It might well be that some might
judge that, indeed, a less than 5% chance of survival justifies
withholding CPR. However, this issue needs direct
discussion, and we should clearly not draw the inference that
that study proved that no patient over the age of 70 could
possibly survive CPR.

WARNING

With confidence limits on a mean, it is important to note that
these provide an interval within which the population mean

likely lies. The confidence interval does not provide limits
within which individual observations lie. It is entirely
incorrect to interpret, for example, a 95% confidence interval
on a mean as limits that encompass the values for 95% of
individual subjects.

OTHER COMMON REGRESSION ANALYSES

In addition to linear regression, described previously (Y = a
+ bx), there are other mathematical relationships linking two
variables including curvilinear (quadratic, cubic, etc.) or
logarithmic functions. Once again all of the commonly used
statistical packages provide these functions (perhaps too)
easily and conveniently. There are also multiple regression
techniques which can be used when there are several
independent variables. The Harris-Benedict equation to
predict energy expenditure is a commonly used multiple
regression equation. The dependent variable predicted must
be quantitative although both qualitative and quantitative
variables can be used as predictors. Qualitative variables are
described as present (using a coefficient of one) or absent
(zero as coeffecient which cancels the term when
multiplied). When the predicted or dependent variable is
categorical, such as living or dead, the appropriate regression
technique is logistic regression. The many severity of illness
indices, such as APACHE and the Mortality Prediction
Model, exemplify the use of logistic regression to calculate
the risk of mortality.

CODA

In a way, we can compare our current medical journals with
daily newspapers and television news programs. They report
the most ``up-to-the-minute’‘ information; the reports may
be incomplete, certain important details may be missing, and
it may be difficult to fit the results reported into the existing
framework of previous information. Sometimes this may
indicate that the existing framework needs to be changed
sharply; at other times, subsequent reports reveal flaws in the
methodology or in the interpretation of the ``newest’‘ report.

Inertia may be interpreted in terms of the difficulty in
moving a stationary object. Remember, too, inertia also
refers to the difficulty in moving an object from the direction
in which it is moving. When the preponderance of data
points in one direction, we should not be too hasty in
changing directions based on a single study that shows the
opposite result. On the other hand, the purpose of this entire
exercise, reading and contributing to the medical literature,
is not only to add to existing knowledge or sharpen the
focus, but also to change directions when necessary. A sense
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of proportion or balance is necessary: to choose a level of
significance; to determine and accommodate types I and II
errors; to distinguish chance from real effects; to separate
statistical likelihood of difference from the importance of
that difference; to give clinical dimensions to real
experimental differences; to weigh costs and detrimental
effects of therapy against the beneficial effects of improving
outcome in devastating illness; or to improve the quality of
life or diminish the costs of care when survival is not the
only important determinant of outcome.

If the medical literature bears any resemblance to the news
media in general, our tasks can only become more difficult
in the future. As more and more information becomes more
easily available with less and less validation, we may pass to
a future that goes beyond Andy Warhol’s dictum that
everyone will be famous for 15 minutes. We may likely be
heading for a future in which everything is true for only 15
minutes. Unfortunately, it will always take more than 15
minutes to analyze a medical report correctly. We will be
faced with an overwhelming input of information. We must
learn to reject quickly the flighty, flimsy, and faulty and to
concentrate on science with substance.
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