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Abstract

The major factor in biological pH control in eukaryotic cells
is the carbon dioxoide-biocarbonate-carbonate buffer
(Scheme I) system,,,,s,,- There other biological buffers such
as bulk protein and phosphate anions which can provide
some buffering effect, metabolites such as lactic acid which
can lower pH and tris(hydroxylmethylaminomethyl)
methane, THAM®) has been used to treat acid base
disorders;,q,,. pH control in prokaryotic cells is mediated by
membrane transport of various ions including hydrogen,
potassium and sodiumy,y, .

Figure 1

In the laboratory, the bicarbonate/carbonate buffer system
can only be used in the far alkaline range (pH 9-11) and
unless “fixed” by a suitable cation such as sodium, can be
volatile.

A variety of buffers, most notably the “Good” buffers which
were developed by Norman Good and colleagues[[[10a]]],
have been developed over the years to provide pH control in
in vitro experiments. While effective in controlling pH , the
numerous non-buffer effects that buffer salts have on

experimental systems are somewhat less appreciated. Some
effects, such as observed with phosphate buffers, are based
on biologically significant interactions with proteins and, as
such, demonstrate specificity. Other effects, such as metal
ion chelation, can be considered general. However, the
binding of metal ions by a specific buffer must be carefully
evaluated considering the recent controversy regarding the
ability of MOPS buffer to bind magnesium ions,,. There are
some effects where the stability of a reagent is dependent on
both pH and buffer species. One example is provided by the
stability of phenylmethylsulfonyl fluoride(PMSF),,. PMSF
was less stable in Tris buffer than in either HEPES or
phosphate buffer; PMSF is less stable in HEPES than in
phosphate buffer. Activity was measured by the ability of
PMSF to inhibit chymotrypsin; all activity was lost in Tris
(10 mM; pH 7.5) after one hour at 25°C while activity was
fully retained in phosphate (10 mM, pH 7.5). This is likely a
reflection of the nucleophilic property of Tris,,,;, which
appears to be enhanced in the presence of divalent cations
such as zinc,s. The loss of activity, presumably the result of
the hydrolysis of the fluoride to hydroxyl function, is more
marked at more alkaline pH. Tris can also function as
phosphoacceptor in assays for alkaline phosphatase but was
not as effective as 2-amino-2-methyl-1,3-propanediol,;. The
various nitrogen-based buffers such as Tris, HEPES, CAP,
and BICINE influence colorimetric protein assays ;s

Other specific examples are presented in Table 1.
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Figure 2
Table 1: Effects of Buffers

Buffer

Observation

ACES

Competitive inhibitor of y-aminobutyric acid

receptor ]Mm:hrlgl

Competitive inhibitor of y-aminobutyric acid

receptor binding!, chelation of calcium 1ons?

EBES

Interacts with DIA vielding distortion of

DHA electrophoreto grams’

EBICINE

Chelation of calcium ions?; protects liver
aleohol dehydrogenase from inactivation by

iodoacetic acid*

Borate

Anomalous complex formation with nucleie
acids?; complex formation with
carbohydrates®”, participant in the
modification of arginine residues by 1,2-

eyclohexanedion e#

Cacodylic Acid

Reaction with sulfydryl compeunds®

Carbonate

Enhances rate of reaction of phenylglyomal
with arginine residues in proteinsi®;

modulation of peroxynitrite reactions with

proteins!l- 12, modulation of Cu?* oxidation

reactions! 13

Citrate

Chelation of calcium ions?

HEPES

Free radical generation!®!” and complexation
of copper ions!®; reported adverse effects in

tissue culture!®D

MES

Complexes copper iong®!

MOPS

Adverse effect on smooth muscle
contraction®, Oxidation of metal ions®2,
formation of mitric oxide donors on
incubation with pero }:ymtrlt:‘z“' slow

reaction with hydrogen peroxide®

FPhosphate

Catalysis of the racemization of 5-

phenylhydantoin 2627

PIFES

Einding to bile salt-stimulated llpas:gg,
variation in physiclogical response based on
vendor source®, inhibition of a K*-activated

phosphatase™,

Interaction with extracellular matrices?!,
inhibition of the interaction of protecglycans

with type 1 collagen™

Tricine

Chelating agent®, tricine radicals have been
reported in the presence of peroxide-forming

enzymes-,

Tns

Mucleophile®™ S and enzyme inhibitor™

References to Table 1
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