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Abstract

There is an increasing interest in the use of propensity score (PS) methods for confounding control, with generally three ways of
estimating adjusted treatment effects in pharmacoepidemiological studies: 1) stratification on PS, 2) matching on PS and 3)
using PS as a covariate. To assess bias and precision of different methods, we conducted simulations in three scenarios: 1)
treatment had no effect but the crude estimate showed a protective effect; 2) treatment was protective and the crude estimate
was more extreme; and 3) treatment increased the risk but the crude estimate showed protective. Adjusting for confounders in
all methods shifted the effect estimates toward the true values. Adjusted odds ratios using the PS stratification and the method
using PS as a covariate were biased due to either residual confounding or over-adjustment. Matching on PS produced less
biased average estimates than other methods but the precision of effect estimates was lower.

Sponsor: The National Health and Medical Research
Council (NH&MRC) of Australia (511013).

INTRODUCTION

Propensity score, introduced by Rosenbaum and Rubin, ' is
the conditional probability of a subject’s receiving the
treatment of interest given a set of covariates. The use of
propensity score is increasing for confounding control,
especially for evaluating treatment effect using observational
data. > However, as suggested by Sturmer et al, there is little
evidence that propensity score methods yield substantially
different estimates compared with conventional regression
methods. * Several simulation studies have conducted to
evaluate the performance of propensity score methods. ** In
a Monte Carlo simulation study, Austin et al shows that
conditioning on the propensity score produces a biased
estimation of the true conditional odds ratio and the true
conditional hazard ratio. > In another Monte Carlo simulation
study, Brookhart et al suggest that standard model building
tools designed to create good predictive models of the
exposure will not always lead to optimal propensity score
models. ° On the other hand, Cepeda et al found that
propensity score estimates were less biased than the logistic
regression estimates when there were six or fewer events per

3
confounder.

Generally, there are three ways to apply propensity scores:
1) stratification on the propensity score, 2) matching on the

propensity score, and 3) using the propensity score as a
covariate. > Little is known about the effect of different ways
of using propensity scores on the bias and precision of
treatment effect estimates. Simulation studies use computer
intensive procedures to assess the performance of statistical
methods in relation to a known truth. ' In this study, we used
simulations to examine different propensity score methods
and logistic regression methods in assessing the treatment
effects. We mainly focused on comparing biases and
precisions of those methods under different scenarios with
various sample sizes.

METHODS
DATA SIMULATION PROCEDURES

As in typical epidemiological studies of assessing treatment
effect, we started with two groups: treatment and non-
treatment groups. The variable X was coded 1 for treatment
and O for non-treatment. The random number generator in
Stata * was used to generate five confounding variables and
the outcome variable. Among the five confounding
variables, two were continuous and three dichotomous.
Three random dichotomous variables were coded 1 and 0.
First, we generated three uniform variables U1, U2 and U3
with values between 0 and 1. For the non-treatment group,
we set a dichotomous variable W1 to be 1 if U1< 0.20 and 0
otherwise, W2 =1 if U2< 0.10 and O otherwise, and W3 =1
if U4 0.4 < 0.40 and O otherwise. For the treatment group,

10f8



Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision

we set W1 =1 if Ul< 0.60, W2=1 if U2< 0.50 and W3 = 1 if
U3 < 0.20. Two random continuous variables were
generated with expected means of 0.25 and 0.20,
respectively, in the treatment group and -0.25 and -0.20 in
the non-treatment group for W4 and W5 respectively. The
standard deviations for both variables in both populations
were 1. The above procedures generated five variables (W1-
W5) associated with the treatment (X).

Outcome variable (Y) was modeled using logistic regression
as a function of (confounding variables (W1-W5) and
treatment (X) variable in three scenarios:

Scenario 1. The odds ratio as a measure of treatment effect
was set to be 0.70. The odds ratios for confounders W1, W2,
W3, W4 and W5 were 0.3, 0.5, 3.0, 0.4 and 0.5. Baseline
probability of having the outcome (Y=1) was 0.30 when all
Ws and X were 0. The probability of a subject with a
specific combination of Ws and X was estimated:

logit(Y) = In(0.3/0.7) +
1n(0.3)*W1+In(0.5)*W2+In(3.0)*W3 + In(0.4)*W4 +
In(0.5)*W5 + In(true OR)*X

where the true OR = 0.70 in the scenario 1.
Pr(YIX, Wi) =exp(logit(Y))/(1 + exp(logit(Y))

The outcome variable (Y) was set to be 1 if the randomly
generated uniform number was less than Pr(YIX, Wi), and to
be 0 if otherwise.

Scenario 2. The associations between confounders (Wi) and
the outcome (Y) were the same as those in Scenario 1 but
there was no treatment effect (the true OR = 1).

Scenario 3. The associations between confounders (Wi) and
the outcome (Y) were the same as those in Scenario 1 and 2
but the true OR = 1.6.

SAMPLE SIZES AND NUMBERS OF
SIMULATIONS

We performed 4 different sets of simulations with 50, 100,
500 and 1000 subjects, respectively, in the treatment group,
and the same numbers in the control group. We generated
36000 dataset with 3000 datasets for each combination of
scenarios and sample sizes.

ADJUSTMENT FOR CONFOUNDING

In each of the 36000 simulated studies, we estimated the
crude and adjusted odds ratios using conventional logistic
regression and three propensity score methods.

Logistic regression method: To estimate the effect of the
treatment on the outcome, we applied logistic regression
with the outcome (Y) as dependent variable and all
confounding factors (Wi) and treatment variable (X) as
independent variables.

Propensity score stratification: We obtained the propensity
score of the treatment (X), the probability of being treated,
using logistic regression with the treatment (X) as a
dependent variable and all confounders (Wi) as independent
variables. The propensity scores were divided into five strata
with 20 ™, 40 ™, 60 " and 80 " percentiles as the cutoffs.
Then, we used the outcome variable (Y) as the dependent
variable and treatment (X) and the categories of the
propensity score were independent variables in logistic
regressions.

Propensity score matching: The propensity score matching
refers to the pairing of treated and untreated subjects with
similar values of the propensity scores and the discarding
unmatched subjects. As proposed by Rubin, all propensity
scores were transformed to the logit scale, which is referred
to as the linear propensity score. " We matched each
treated subject to a untreated subject with the closest
propensity score (1:1 matching) within the range of linear
propensity score £0.25. If there were no untreated subjects
within the range for a treated subject, this subject would not
be included in the conditional logistic regression. A unique
identification number was assigned to each matched pair,
and this variable was used as the identifier variable for the
matched groups in the conditional logistic regression, in
which the dependent variable was the outcome (Y) and the
independent variable was the treatment (X).

Propensity modeling: We took the linear propensity score, a
continuous variable, as a covariate in the logistic regression.
The dependent variable was the outcome (Y) and
independent variables were the treatment (X) and the linear
propensity score. In this study, we only assessed linear
relationship between the propensity score and the outcome.

MEASURES OF INTEREST

Bias: Odds ratios by four different methods were calculated
and compared with the true values, which were 0.7 in
scenario 1, 1.0 in scenario 2 and 1.6 in scenario 3. The
differences between the true and estimated odds ratios
indicated the bias of the effect estimates. Average
differences of log odds ratios were presented according to
the methods, sample sizes and scenarios.
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Precision: We calculated standard errors of log odds ratios as
a measure for precision. Since the same data sources were
used for all four methods, the average standard errors among
different methods were compared.

We conducted all simulations and analyses using Stata 10. *
Matching was a tedious and time consuming procedure, so
we developed a Stata program (CMATCH) to perform this
task. The change-in-estimate approach has been
recommended for selecting confounders for control. ' All
confounding variables in this study were true confounders
and all were included in the analyses. Confounder selection
was not the focus of this study. However, the distortion of
these confounders to the odds ratio will be demonstrated
using a Stata program.

RESULTS

CHARACTERISTICS OF DATASET
SIMULATIONS

Table 1 shows the characteristics of treated and untreated
groups. Those confounding variables were substantially
different between two groups. Table 2 shows the numbers of
cases in 3 scenarios according to sample sizes. The numbers
of cases were very small, ranging from 3 to 10 per
confounder, when sample size was 50 in the treatment
group. When the sample size was 1000, there were over 100
cases per confounder.

Figure 1

Table 1. Mean (minimum and maximum) values of
confounding variables in 3000 simulations for each sample
size

Confounders Non-treatment Treatment

Sample size = 50

W1 10 (2, 22 30 (17, 41)

w2 5(0, 14) 25 (13, 36)

W3 20 (9, 32) 10 (1, 19)

W4 -0.25(-0.78, 0.22) | 0.25 (-0.22, 0.80)
SD for W4 1.00 (0.61, 1.35) 1.00 (0.67, 1.34)

W5 -0.20 (-0.79, 0.30) | 0.20 (-0.30, 0.70)
SD for W5 1.00 (0.69, 1.33) | 0.99 (0.70, 1.35)

Sample size = 100

w1 20 (9, 34) 60 (41, 78)

w2 10 (2, 23) 50 (34, 73)

W3 40 (20, 57) 20 (7. 34)

W4 -0.25 (-0.59, 0.07) | 0.25 (-0.12. 0.66)
SD for W4 1.00 (0.79, 1.30) | 0.99 (0.76, 1.22)

w5 -0.20 (-0.54, 0.16) | 0.20 (-0.15, 0.57)
SD for W5 1.00 (0.78, 1.25) | 1.00 (0.75, 1.23)

Sample size = 500

w1 100 (71, 128) 300 (267. 333)
w2 50 (29, 74) 251 (215, 284)
W3 200 (165, 236) 100 (73, 132)
W4 -0.25 (-0.39, -0.11) | 0.25 (0.09, 0.43)
SD for W4 1.00 (0.90, 1.11) | 1.00(0.91, 1.11)
w5 -0.20 (-0.36, -0.04) | 0.20 (0.08, 0.36)
SD for W5 1.00 (0.89, 1.12) | 1.00 (0.88, 1.10)

Sample size = 1000

W1 200 (159, 250) 600 (536, 653)
W2 100 (66, 136) 499 (447, 559)
W3 400 (348, 467) 200 (149, 242)
W4 -0.25 (-0.38, -0.15) | 0.25 (0.13, 0.36)
SD for W4 1.00 (0.93, 1.08) 1.00 (0.92, 1.11)
W5 -0.20(-0.30, -0.09) | 0.20(0.10, 0.31)
SD for W5 1.00 (0.92, 1.09) 1.00 (0.91, 1.09)

Figure 2

Table 2. Mean (minimum and maximum) number of cases
by sample size and scenario: 3000 simulations in each
sample size and scenario combination

Sample size | Scenario 1: OR=1.0 | Scenario 2: OR=10.7 True OR.=1. 6
50 31 (15, 46) 29 (15, 44) 33 (20, 51)
100 61 (40, 84) 57 (37, 80) 67 (43, 91)
500 306 (263, 350) 288 (249, 331) 336 (289, 382)
1000 613 (535, 683) 576 (504, 844) 672 (504, T42)

One example data set (one of the 3000 sets with the sample
size of 1000) was randomly selected to demonstrate the
presence of confounding effects from five variables W1-WS5,
using the change-in-effect estimate method. "* Figure 1
shows the effect estimates after adjusting for each of
confounders according to the magnitude of the change-in-
effect estimate in a stepwise fashion. All five confounding
variables contributed to the distortion of odds ratio estimates
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(the change-in-estimate) in three scenarios. Adjusting for

confounding variables altered the effect estimates from huge

protective effects (crude odds ratios) to the true effect
values.

Figure 3

Figure 1. Crude and adjusted odds ratios in one data set:
variables added in a stepwise fashion according to the
change-in-estimate. Vertical dash lines represent true odds
ratios.
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EFFECT ESTIMATES

Table 3 shows the average odds ratios according to sample
size and scenario combinations. The crude odds ratios in
three scenarios showed a strong protective effect of the
treatment. The odds ratios adjusting for confounding factors
using logistic regression and three propensity score methods
were closer to the true values, indicating that the treatment
had 1) no effect in scenario 1, 2) a protective effect in
scenario 2 but to a much less extent than the crude estimate,
and 3) a risk effect in scenario 3, opposite to the crude
estimate. However, those methods performed differently in
terms of biases and precisions of their effect estimates.

Figure 4

Table 3. Mean odds ratio by sample size and scenario: 3000
simulations in each sample size and scenario combination

Scenario 1: Scenario 2: Scenario 3:

True OR=1.0 | True OR=0.7 True OR = 1.6
Sample size = 50
Crude 0.266 0.197 0.388
Logistic 1.017 0.673 1.745
Modeling 1.069 0.769 1.642
Matching 1.000 0.745 1.496
Stratification 0.925 0.651 1.464
Sample size = 100
Crude 0.271 0.202 0.393
Logistic 1.015 0.688 1.668
Modeling 1.064 0.766 1.617
Matching 1.011 0.710 1.584
Stratification 0.922 0.652 1.432
Sample size = 500
Crude 0.276 0.209 0.396
Logistic 1.015 0.708 1.622
Modeling 1.063 0.774 1.601
Matching 1.004 0.724 1.529
Stratification 0.925 0.667 1.409
Sample size = 1000
Crude 0.276 0.208 0.396
Logistic 1.002 0,690 1.607
Modeling 1.050 0.765 1.589
Matching 0.995 0.718 1.519
Stratification 0.915 0.660 1.399

BIAS

Figure 2 shows the differences between the estimated and
true log odds ratios. The propensity score stratification
method consistently produced an odds ratio away from the
true value in a direction towards the crude odds ratio
regardless of the sample size and the magnitude of the true
value. In two of the three scenarios (1 and 2), the propensity
score linear modeling yielded average odds ratios that were
higher than the true values and in a direction that was further
away from the crude effect estimate. The bias from the
propensity score matching tended to be less extreme than
those from propensity score stratification and propensity
score modeling.
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Figure 5

Figure 2. Mean bias by methods, scenario and sample size:
3000 simulations per sample size and scenario combination.
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Mean standard errors are shown in Figure 3. The propensity
score stratification and propensity score modeling had lower
mean standard errors than the conventional logistic
regression. The propensity matching had highest mean
standard errors.

Figure 6

Figure 3. Mean bias by methods, scenario and sample size:
3000 simulations per sample size and scenario combination.
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We calculated the numbers of pairs used in the propensity
score matching methods. On average, 42 (min: 23, max: 61)
and 220 (175, 264) and 443 (378, 513) treated subjects were
matched to the untreated subjects, which were 42%, 44%
and 44% of the total subjects, for simulations with 100, 500
and 1000 treated subjects, respectively.

To further explore possible explanations of the higher bias
using the stratification method and higher mean standard
errors using the propensity score matching method. Using
the example dataset for Figure 1, we generated Figure 4,
which demonstrates the striking difference in the distribution
of propensity scores between treatment and non-treatment
groups. Even within each propensity score stratum, two
groups still had different propensity scores. The figure also
shows that a small proportion (shaded area) of treated and
untreated subjects could be matched.

Figure 7

Figure 4. Distributions of linear propensity scores in
treatment and non-treatment groups: vertical lines are the
stratification cutoffs and shaded area represents the matching
between treatment and non-treatment subjects
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DISCUSSION

In this study, we found that the propensity score methods
provided biased effect estimates. Residual confounding
persists in the propensity score stratification method
regardless of sample size and the strength and direction of
the true treatment effects. Using the propensity score as a
linear predictor also produced biased effect estimates but the
direction of this bias can be different from that of residual
confounding. Matching by propensity scores excluded a
large proportion of subjects and resulted in the effect
estimates with less precision.

Several systematic reviews have been conducted on this

. 2,13, 14
topic.

Sturmer et al found 13% studies using a
propensity score method had an effect estimate that differed
by more than 20% from that obtained with a conventional
regression model. > Shah et al found the statistical
significance of the association differed between two methods

in 10% of the effect estimates, in which the association was
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statistically significant using conventional regress but not
significant using propensity score methods. * Most
observational studies had similar results whether using
conventional regression or using propensity scores to adjust
for confounding. ** Drake shows that omitting a confounder
in the propensity score method produces biases comparable
to those in a conventional regression model. "* Using an
example dataset from Hosmer and Lemeshow, '° Drake and
Fisher reported that the propensity score method leads to a
different conclusion with regard to the effects of smoking on
birthweight. " However, it is difficult to assess the
performance of different methods using real data sets
because the true values of the treatment effects are unknown.

Simulations studies provide an opportunity to assess the
performance of different statistical methods in relation to a
known truth using computer intensive procedures. ' Several
simulation studies have been conducted on the propensity
%6151 Brookhart et al revealed that the

model best predicted exposure did not yield the optimal

score methods.

propensity score model in terms of efficiency when
including a non-confounder in the propensity score model. °
They suggested that variables that are unrelated to the
exposure but related to the outcome should be always
included in a propensity score model. ** Austin et al found
that failure to include an important confounding variable in
the propensity score model can result in variable imbalance
between exposed and unexposed subjects and result in
biased estimation of the effect. ° In this study, all variables
were true confounding factors and performances of different
propensity score methods were assessed using the same data
set with the same confounding variables.

Cepeda et al found that the propensity score estimates were
less biased that the logistic regression estimates when there
were six or fewer events per confounder. Overall the
propensity score was more robust, more precise and had
more power than logistic regression. * The purpose of this
study was not to compare the logistic regression estimates
with those of different propensity score methods. Since we
carried out the simulations according to the known logistic
regression models to generate data, logistical regression
models were theoretically correct. However, we
demonstrated some potential problems of different
propensity score methods. In this study, even when the
number of cases was about six per confounder (when
treatment group n = 50), the propensity score methods
produced biased estimates. The statistical power with such a
small sample size is too low to provide a reasonable effect

estimates regardless of the methods. Even if there were no
confounding in this study, the sample sizes required to detect
an odds ratio of 0.7 and 1.6 should be 638 and 314 with 80%
power.

Among the three ways of applying propensity scores, the
propensity stratification method produced biased effect
estimates toward the crude estimate, indicating the presence
of residual confounding. We did not check if the distribution
of the confounders in the treated and un-treated groups in
each stratum were similar. However, the presence of residual
confounding is likely to be a common phenomenon because
within each stratum the treatment subjects can still have
higher propensity scores than their untreated counterparts, as
illustrated in Figure 4.

Matching by propensity scores can efficiently balance the
propensity scores between two groups at the expense of
losing a large proportion of the subjects. In our simulated
data only 42% to 44% subjects were matched, the precision
of the estimates of the matching method were lower than
those of other methods.

The linear modeling of propensity scores as a continuous
variable can also produce biased estimates. In two of the
three scenarios, the linear modeling produced biased
estimates to the opposite side of the crude estimate,
indicating an over-adjustment. We did not explore whether
fitting a non-linear relationship in the model would change
the magnitude of bias or alter the direction of bias. Only one
set of confounding variables were used in all three scenarios
and four methods. In the real world, the relationships among
confounders, treatment and outcome can be more
complicated. Therefore, the magnitude and the direction of
bias of propensity score methods are likely to vary
accordingly.

CONCLUSION

Propensity score methods potentially produce biased effect
estimates. Residual confounding is common when using the
propensity stratification method. Propensity matching results
in lower precision of effect estimates. Linear modeling of
propensity scores may not appropriate for all data. Better
understanding of the benefits, limitations and appropriate use
of the propensity score methods are needed before they are
widely used.

ACKNOWLEDGEMENT

Zhiqiang Wang was supported by the National Health and
Medical Research Council (NHMRC) of Australia (511013).

6 of 8



Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision

References

1. Rosenbaum P, Rubin D. The central role of the propensity
score in observational studies for causal effects. Biometrika
1983;70:41-55.

2. Sturmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ,
Schneeweiss S. A review of the application of propensity
score methods yielded increasing use, advantages in specific
settings, but not substantially different estimates compared
with conventional multivariable methods. J Clin Epidemiol
2006;59:437-47.

3. Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison
of logistic regression versus propensity score when the
number of events is low and there are multiple confounders.
Am J Epidemiol 2003;158:280-7.

4. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ,
Cook EF. Evaluating uses of data mining techniques in
propensity score estimation: a simulation study.
Pharmacoepidemiol Drug Saf 2008.

5. Austin PC, Grootendorst P, Anderson GM. A comparison
of the ability of different propensity score models to balance
measured variables between treated and untreated subjects: a
Monte Carlo study. Stat Med 2007;26:734-53.

6. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ,
Avorn J, Sturmer T. Variable selection for propensity score
models. Am J Epidemiol 2006;163:1149-56.

7. Burton A, Altman DG, Royston P, Holder RL. The design
of simulation studies in medical statistics. Stat Med
2006;25:4279-92.

8. Stata Statistical Software: Release 10 [program]. College
Station, TX: StataCorp LP, 2007.

9. Rubin DB, Thomas N. Matching using estimated
propensity scores: relating theory to practice. Biometrics

1996;52:249-64.

10. Rubin DB. Using propensity scores to help design
observational studies: application to the tobacco litigation.
Health Services & Outcome Research Methodology
2001;2:169-188.

11. Maldonado G, Greenland S. Simulation study of
confounder-selection strategies. Am J Epidemiol
1993;138:923-36.

12. Wang Z. Two postestimation commands for assessing
confounding effects in epidemiological studies Stata Journal
2007;7:183-196.

13. Shah BR, Laupacis A, Hux JE, Austin PC. Propensity
score methods gave similar results to traditional regression
modeling in observational studies: a systematic review. J
Clin Epidemiol 2005;58:550-9.

14. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor
V. Principles for modeling propensity scores in medical
research: a systematic literature review. Pharmacoepidemiol
Drug Saf 2004;13:841-53.

15. Drake C. Effects of misspecification of the propensity
score on estimators of treatment effect. Biometrics
1993;49:1231-1236.

16. Hosmer DW, Lemeshow S. Applied Logistic Regression.
New York: John Wiley, 1989.

17. Drake C, Fisher L. Prognostic models and the propensity
score. Int J Epidemiol 1995;24:183-7.

18. Austin PC, Grootendorst P, Normand SL, Anderson GM.
Conditioning on the propensity score can result in biased
estimation of common measures of treatment effect: a Monte
Carlo study. Stat Med 2007;26:754-68.

19. Judkins DR, Morganstein D, Zador P, Piesse A, Barrett
B, Mukhopadhyay P. Variable selection and raking in
propensity scoring. Stat Med 2007;26:1022-33.

70f8



Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision

Author Information

Zhiqiang Wang, PhD
Centre for Chronic Disease, School of Medicine, the University of Queensland

8of8



