Risk Factors for Peripheral Arterial Disease in United States Asymptomatic Patients Aged 40 - 69 and Asymptomatic Patients Aged \geq 70: Results from NHANES 1999-2004

J Reed

Citation

J Reed. Risk Factors for Peripheral Arterial Disease in United States Asymptomatic Patients Aged 40-69 and Asymptomatic Patients Aged \geq 70: Results from NHANES 1999-2004. The Internet Journal of Epidemiology. 2008 Volume 7 Number 2.

Abstract

Our purpose was to establish the prevalence of PAD using National Health and Nutrition Examination Surveys (NHANES) data from 1999-2004 in men and women ages 40-69 and 70+ without history of coronary heart disease, MI, stroke or TIA, or angina.Results: Females aged 40-69 were 1.77 times more likely to have PAD than men.Diabetics were 3.07 times more likely to have PAD than non-diabetics. Class 2 and Class 3 hypertension patients were 3.08 and 2.47 more likely, respectively to have PAD than patients with blood pressure of <140/90. Overall, diabetes in addition to another risk factor increased odds of having PAD more than three fold. For individuals aged 70 or older, similar patterns of risk were identified. Conclusions: PAD is highly prevalent among asymptomatic individuals. Diabetes mellitus, moderate and low kidney function, hypertension (treated but not controlled and untreated), and smoking are all independently associated with greater prevalence of PAD.

INTRODUCTION

Peripheral arterial disease (PAD) is an occlusive vascular disease resulting from progressive narrowing and hardening of the arteries that deliver blood flow to the limbs. With the presence of PAD one's extremities, often the legs, do not receive enough oxygenated blood to keep up with the demand. The most common symptom of PAD is intermittent claudication (IC) which is pain or discomfort felt in the legs while walking or exercising that disappears during rest. PAD is associated with many of the same causal factors as other related atherosclerotic cardiovascular and cerebrovascular diseases including hypertension, hypercholesterolemia, diabetes mellitus, decreased kidney function, smoking, age, and race/ethnicity.

According to estimates by the American Heart Association as many as 8 to 12 million Americans have PAD, predominantly those who are of 50 years of age or older. Nearly 75% of these people are either asymptomatic or mistake their symptoms of PAD for something else. Both symptomatic and asymptomatic PAD are associated with a greater risk of functional decline and are often subclinical markers for coronary artery disease which identifies
individuals at high risk for future cardiovascular events such as myocardial infarctions or strokes (1-3).

The estimates of the prevalence of PAD in the United States based on an ankle-brachial index (ABI) < 0.90 vary substantially. Using similar diagnostic criteria, estimates of PAD prevalence have ranged from 3% to 30% in US adult populations (4-7). Based on the first 2 years of the National Health and Nutrition Examination Survey (NHANES), the reported PAD prevalence among U.S. adults aged 60 to 69 was $4.8 \%, 12.0 \%$ in 70 to 79 year olds, and 22.0% prevalence in octogenarians (8). A more recent report also indicated that the prevalence of lower extremity disease increases with age: 7.0% for those aged $60-69,12.5 \%$ for those aged 70 to 79 , and 23.2% for those aged 80 and older (5).

As the population of the United States continue to age and the prevalence of risk factors such as hypertension, hypercholesterolemia, and diabetes increase, the public health burden of PAD will also continue to increase, having a dramatic effect on the U.S. healthcare industry.

The aim of this study was to establish the prevalence of PAD
using National Health and Nutrition Examination Surveys (NHANES) data from 1999-2004 in men and women ages \geq 40 without a history of coronary heart disease, MI (heart attack), stroke or TIA, or angina.

METHODS AND MATERIALS

The National Health and Nutrition Examination Surveys (NHANES) is a nationally representative survey of the U.S. civilian non-institutionalized population conducted by the National Center for Health Statistics of the Centers for Disease Control and Prevention. Since 1999, NHANES has conducted continuous interviews and physical examinations. This study is based on six years of the continuous NHANES data (1999-2004).

NHANES participants are interviewed in their homes to obtain information on health history, health behaviors, and risk factors. Those participants then undergo a physical examination at a mobile examination center. The procedures followed to select the representative sample and conduct the interview and examinations are carefully outlined in the National Center for Health Statistics Analytic Guidelines, 2006 and informed consent is obtained from all participants. All data, including those used in this study, are available online through the NHANES website.

NHANES participants 40 years of age and older were asked to participate in the ABI Section of the Lower Extremity Disease examination. Persons were excluded from the exam if they had a bilateral amputation or weighed over 400 pounds (due to equipment limitations). Some participants who were eligible for the exam might not have received the exam for multiple reasons \{e.g. casts, ulcers, dressings, or other conditions interfered with testing, equipment failure, participant refusal\}. The lower extremity disease examination was performed by trained health technicians in a specially equipped room in the mobile examination center following a prescribed protocol.

The NHANES ABI is automatically calculated by their computer system and verified by the National Center for Health Statistics before data release. The right ABI was determined by dividing the mean systolic blood pressure in the right ankle by the mean systolic blood pressure in the brachial artery of the arm. The left ABI was computed in the same way only using measurements from the left extremities. The mean blood pressure value for the arm and ankles are computed based on the first and second reading at each site. Since the second reading for all persons 60+ are
missing, the mean values are in fact the first recorded blood pressure readings at a site.

Demographic variables including age and race/ethnicity were assessed in this study using data from the NHANES demographic questionnaire. Race/ethnicity was classified as non-Hispanic white, non-Hispanic black, and Mexican American.

Brachial blood pressure was categorized into four groups: normal BP ($<140 / 90 \mathrm{mmHg}$ taking no prescription drugs for hypertension); untreated hypertension (≥ 140 or $\geq 90 \mathrm{mmHg}$ and not taking blood pressure medication); treated, uncontrolled hypertension (currently taking prescription for high BP and $\mathrm{BP} \geq 140 \mathrm{mmHg}$ or $\geq 90 \mathrm{mmHg}$); and treated controlled hypertension (currently taking prescription for high BP and BP <140/90). Individuals were defined as diabetic if they reported ever having had a doctor tell them that they had diabetes mellitus. Height and weight measures were used to compute body mass index (BMI kg/m2). BMI was then categorized into $<25.0 \mathrm{~kg} / \mathrm{m} 2,25.0-29.9 \mathrm{~kg} / \mathrm{m} 2$, and $\geq 30.0 \mathrm{~kg} / \mathrm{m} 2$.

A measure of kidney filtration function, glomerular filtration rate (GFR), was calculated using the abbreviated Modification of Diet in Renal Disease (MRDR) Study formula based on serum creatinine, age, sex, and race. A GFR $>90(\mathrm{~mL} \cdot \mathrm{~min}-1 \cdot 1.73 \mathrm{~m}-2$) was defined as normal, mildly decreased kidney function was defined as 60 to 90 ($\mathrm{mL} \cdot \mathrm{min}-1 \cdot 1.73 \mathrm{~m}-2$), and a low kidney function was defined as a GFR $<60(\mathrm{~mL} \cdot \mathrm{~min}-1 \cdot 1.73 \mathrm{~m}-2)$.

RESULTS

In the 40-69 year olds, females were 1.77 times more likely to have PAD than men (CI 1.27-2.48), and diabetics were 3.07 times more likely to have PAD than non-diabetics (CI 2.11 - 4.46). Non-Hispanic blacks were 2.25 times more likely to have PAD than non-Hispanic whites (CI 1.56 3.23). Both Class 2 and 3 hypertension patients were 3.08 and 2.47 times more likely to have PAD than Class 1 patients (CI 2.03-4.66 and 1.66-3.69, respectively). Smokers and patients with a low glomerular filtration rate (GFR) were 1.90 and 2.34 times more likely than nonsmokers and those with a normal GFR to have PAD (CI 1.35 -2.65 and $1.10-4.99$, respectively). Overall, diabetes increased the odds of having PAD more than three fold in some cases. For example, diabetic smokers are 6.61 times more likely to have PAD than non-diabetic non-smokers (CI 3.76-11.6). Female diabetics were 5.02 times more likely to
have PAD than non-diabetic males (CI 2.84-8.87). Further, diabetics with low GFR were almost twice as likely to have PAD than non-diabetics with normal GFR ($\mathrm{OR}=1.88$, CI 1.08-3.30).

Figure 1

Table 1. Univariate Odds Ratios (95\% Confidence Intervals) for Peripheral Arterial Disease (Ankle Brachial Index < 0.90) in Selected Risk Factors in Adults without Cerebrovascular Disease

	$\%$	Adults 40-69 $\text { OR }(954 / \mathrm{CD}$	$\begin{aligned} & \quad \text { Adults } 70+ \\ & 8 \quad \text { OR }(955 \% \mathrm{CD} \end{aligned}$	
Gender				
Male	2.7\%	1.00 (reference)	17.2\%	1.00 (reference)
Female	4.6\%	$1.77(1.27-2.48) \dagger$	19.3\%	1.15 (0.86-1.55)
Diabetes mellitus				
No	3.0\%	1.00 (reference)	17.1\%	1.00 (reference)
Yes	8.8\%	3.07 (2.11-4.46)t	27.3\%	$1.82(1.20-2.75) \dagger$
Race Ethmicty				
NH White	3.2\%	1.00 (reference)	16.4\%	1.00 (reference)
NH Black	69\%	$2.25(1.56-3.23) \dagger$	27.4\%	$1.92(1.29-2.96) \dagger$
MA/Other Hispanic	2.6\%	0.79 (0.51-1.23)	18.7\%	1.17 (0.80-1.72)
Hypertension ${ }^{1}$				
Class 1	2.5\%	1.00 (reference)	15.0\%	1.00 (reference)
Class 2	7.4\%	$3.08(2.03-4.66) \dagger$	24.5\%	$1.84(1.30-2.59) \dagger$
Class 3	6.0\%	$2.47(1.66-3.69) \dagger$	18.5\%	1.29 (0.87-1.90)
Class 4	5.71\%	2.05 (0.81-5.20)	24.2\%	1.81 (0.80-4.14)
Hypercholesterolemia				
No	3.7\%	1.00 (reference)	17.1\%	1.00 (reference)
Yes	3.7\%	0.99 (0.77-1.38)	18.8\%	1.12 (0.82-1.53)
BMI				
<25	3.4\%	1.00 (reference)	20.2\%	1.00 (reference)
25-30	2.8\%	0.82 (0.53-1.26)	16.6\%	0.79 (0.56-1.10)
>30	4.6\%	1.34 (0.89-2.01)	16.8\%	0.80 (0.53-1.20)
Smoking status				
Formes never	3.1\%	1.00 (reference)	16.5\%	1.00 (reference)
Current	5.6\%	$1.90(1.35-2.65) \dagger$	35.5\%	2.78 (1.81-4.26)
Olomerular filtration rate ($\mathrm{mL} / \mathrm{min}$)				
Nomal (GFR > 90)	3.0\%	1.00 (reference)	13.3\%	1.00 (reference)
Midly decreased ($60 \leq \mathrm{GFR} \leq 90$)	4.1\%	1.38 (0.97-1.95)		16.7\% 1.31 (0.89-1.93)
Low (GFR < 60)	6.8\%	$2.34(1.10-4.99) \dagger$	28.9\%	$2.65(1.71-4.12) \dagger$
CRPP (mg/dL)				
<1.0	3.15	1.00 (reference)	16.7\%	1.00 (reference)
$1.0-2.3$	7.1\%	2.39 (1.49-3.84)	28.3\%	1.97 (1.22-3.20)
≥ 2.4	119\%	4.26 (2.15-8.47)	28.6\%	2.00 (0.94-4.25)
TP-value < 0.05				
${ }^{1}$ Hyptertension: Class 1: $\mathrm{BP}<140 / 90$ Class 2: Treated and SBP $\geq 140 \mathrm{mmHg}$ or DBP $\geq 90 \mathrm{mmHg}$. Class 3: Treated and $\mathrm{BP}<140 / 90$. Class 4: Untreated and SBP $\geq 140 \mathrm{mmHg}$ or $\mathrm{DBP} \geq 90 \mathrm{mmH}$				

In the 70+ year olds, diabetics were 1.82 times more likely to have PAD than non-diabetics (CI 1.20-2.75). NonHispanic blacks were 1.92 times more likely to have PAD than non-Hispanic whites (CI 1.29-2.86). Both Class 2 hypertension patients and Class I hypertension patients were more likely to have PAD than Class 1 patients. Smokers were 2.78 more likely than non-smokers have PAD (CI 1.81 - 4.26). Diabetes also increased the risk of having PAD. For example, diabetic smokers are 6.16 times more likely to have PAD than non-diabetic non-smokers (CI 2.20-17.2). Female diabetics were 1.90 times more likely to have PAD than non-diabetic males (CI 1.03-3.52) and diabetic patients with low GFR were 2.54 times more likely to have PAD than non-diabetics with normal GFR (CI 1.23 - 5.24).

Figure 2
Table 2. Univariate Odds Ratios (95\% Confidence Intervals) for Peripheral Arterial Disease (Ankle Brachial Index < 0.90) in Selected Risk Factors in Adults without Cerebrovascular Disease

	$\%$	Adults 40-69 $\text { OR }(95 \% \mathrm{CD})$	$\begin{array}{ll} & \text { Adults } 70+ \\ \% & \text { OR }(95 \% \mathrm{CD}) \end{array}$	
Gender				
Male w/o Diabetes	1.9\%	1.00 (reference)	15.7\%	1.00 (reference)
Male w Diabetes	8.6\%	$4.83(2.74-8.53) \dagger$	28.2\%	$2.18(1.19-3.70) \dagger$
Female w/o Diabetes	4.1\%	$2.20(1.47-3.30) \dagger$	18.5\%	1.22 (0.86-1.67)
Female w Diabetes	8.9\%	$5.02(2.84-8.87) \dagger$	26.2\%	$1.90(1.03-3.52) \dagger$
RaceEthnicity				
NH White wo Diabetes	2.9\%	1.00 (reference)	15.8\%	1.00 (reference)
NH White w Diabetes	7.9\%	$2.90(1.48-5.67) \dagger$	23.7\%	1.66 (0.88-3.12)
NH Black w/o Diabetes	5.7\%	$2.04(1.35-3.10) \dagger$	25.4\%	$1.81(1.16-2.84) \dagger$
NH Black w Diabetes	14.2\%	$5.61(3.14-10.0) \dagger$	35.5\%	$2.93(1.37-6.28) \dagger$
MA/Other w/o Diabetes	1.8\%	0.63 (0.37-1.07)		
MA/Other w Diabetes	6.8\%	2.41 (1.27-4.59)		
Hypertension				
Class 1 wo Diabetes	2.3\%	1.00 (reference)	13.7\%	1.00 (reference)
Class 1 w Diabetes	5.9\%	$2.72(1.47-5.04) \dagger$	31.3\%	$2.87(1.49-5.51) \dagger$
Class 2 wo Diabetes	6.1\%	$2.79(1.71-4.57) \dagger$	23.7\%	$1.96(1.35-2.85)+$
Class 2 w Diabetes	12.8\%	$6.35(3.29-12.2) \dagger$	29.7\%	$2.70(1.27-5.61) \dagger$
Class 3 wo Diabetes	4.7\%	$2.12(1.30-3.46) \dagger$	17.8\%	1.37 (0.88-2.12)
Class 3 w Diabetes	10.9\%	$5.29(2.93-9.56) \dagger$	21.3\%	1.71 (0.82-3.56)
Smoking status				
Former never w/o Diabetes	2.6\%	1.00 (reference)	15.7\%	1.00 (reference)
Former'never w Diabetes	6.7\%	$2.68(1.66-4.35) \dagger$	23.9\%	1.69 (1.07-2.68(\dagger
Current wo Diabetes	4.4\%	1.73 (1.16-2.56) \dagger	32.6%	$2.31(1.63-4.17) \dagger$
Current w Diabetes	15.0\%	$6.61(3.76-11.6) \dagger$	53.3\%	$6.16(2.20-17.2) \dagger$
Gomerular filtration rate ($\mathrm{mL} / \mathrm{min}$)				
Normal GFR w/o Diabetes	3.5\%	1.00 (reference)	15.9\%	1.00 (reference)
Normal GFR w Diabetes	10.6\%	$3.22(1.70-6.15) \dagger$	24.2\%	1.69 (0.90-3.15)
Decreased GFR wo Diabetes	3.3\%	$0.92(0.28-3.02) \dagger$	28.4\%	$2.10(1.42-3.11) \dagger$
Decreased GFR w Diabetes	20.0\%	$6.83(2.46-18.9) \dagger$	32.1\%	$2.50(1.10-5.71) \dagger$
Low GFR wo Diabetes	2.6\%	0.72 (0.49-1.08)	10.8\%	$0.64(0.41-0.99) \dagger$
Low GFR w Diabetes	6.5\%	$1.88(1.08-3.30) \dagger$	32.4\%	$2.54(1.23-5.24) \dagger$

+ P-value < 0.05

${ }^{1}$ Hyptertension: Class 1: $\mathrm{BP}<140 / 90$

Class 3: Treated and BP $<140 / 90$,
Class 4: Untreated and $S B P \geq 140 \mathrm{mmHg}$ or $\mathrm{DBP} \geq 90 \mathrm{mmHg}$

DISCUSSION

These results confirm that PAD is highly prevalent among asymptomatic individuals. Our results show that diabetes mellitus, moderate and low kidney function measured by GFR, hypertension (treated but not controlled and untreated), and smoking are all independently associated with greater prevalence of PAD.

PAD is characterized by arterial stenosis and occlusion in the peripheral arterial bed and can be symptomatic or asymptomatic. Symptomatic PAD ranges in severity from intermittent claudication to critical limb ischemia. In symptomatic or asymptomatic patients, PAD is an indicator of diffuse and significant atherothrombotic disease and may lead to increased risk of myocardial infarction and strokes.

Intermittent claudication is the primary and often only clear symptom of PAD. However, an estimated 16.5 million of PAD patients do not experience any symptoms of the disease (9). Additionally, one-third of patients with symptomatic PAD do not report their symptoms to their doctor believing
symptoms to be a natural manifestation of the aging process Compounding this under-reporting is the report that clinicians who rely on a classic history of claudication alone to detect PAD will miss 85% to 90% of their patients with this high-risk atherothrombotic disease (10).

The ankle-brachial pressure index, the ratio of ankle to brachial systolic blood pressure, is a simple non-invasive test that can be performed in the primary care setting without expensive or elaborate equipment, extensive training or experience. This test is used in the assessment of lower extremity arterial obstruction and for screening of patients with suspected peripheral arterial disease. Studies have shown that a low ABI (ABI <0.90) as an indicator of PAD is associated with an increased risk of all-cause mortality, cardiac events, stroke, and kidney failure in both symptomatic and asymptomatic individuals (2, 11-13). In other studies, subjects with borderline $\mathrm{PAD}(0.90 \leq \mathrm{ABI} \leq$ $0.99)$ or with low-normal $\mathrm{ABI}(1.00 \leq \mathrm{ABI} \leq 1.09)$ implied an increased risk of coronary and carotid atherosclerosis with an associated increased risk of premature death adverse cardiovascular events (1-2, 14-15).

The Prevention of Atherothrombotic Disease Network (16) outlined a five-item action plan to improve the current unmet need with respect to the treatment and diagnosis of PAD: (1) increase awareness of PAD and its consequences (myocardial infarction, stroke, vascular disease), (2) improve the identification of patients with symptoms of PAD, (3) Initiate screening for patients at high risk for PAD especially smokers, people with diabetes and with a history of myocardial infarction and/or stroke, (4) improve treatment rates among for symptomatic PAD patients, and (5) increase the rate of early detection of among the high-risk population without PAD.

References

1. Diehm C, Lange S, Darius H, Pittrow D, et al. Association of low ankle brachial index with high mortality in primary care. European Heart Journal 2006;27:1743-49.
2. Wild SH, Byrne CD, Smith FB, Lee AJ, Fowkes FG. Low ankle-brachial pressure index predicts increased risk of cardiovascular disease independent of the metabolic syndrome and conventional cardiovascular risk factors in the Edinburgh Artery Study. Diabetes Care 2006;29:637-42.
3. Li J, Luo Y, Xu Y, Yang J, Zheng L, Hasimu B, Yu J, Hu
D. Risk factors of peripheral arterial disease and relationship between low ankle-brachial index and mortality from allcause and cardiovascular disease in Chinese patients with type 2 diabetes. Circ J. 2007;71:377-81.
4. Murabito JM, Evans JC, Larson, MG, Nieto K, Levy D, Wilson PWF. The ankle-brachial index in the elderly and risk of stroke, coronary disease, and death; the Framingham Study. Arch Intern Med 2003;163:1939-42.
5. Ostchega Y, Paulose-Ram R, Dillon CF, Gu Q, Hughes

JP. Prevalence of peripheral arterial disease and risk factors in persons aged 60 and older: Data from the National Health and Nutrition Examination Survey 1999-2004. Journal of the American Geriatrics Society 2007;55:583-9.
6. Selvin E and Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: Results from the National Health and Nutrition Examination Survey, 199-2000. Circulation 2004;110;738-43.
7. Zheng ZJ, Sharrett AR, Chambless LE, Rosamond WD, Nieto FJ, Sheps DS, Dobs A, Evans GW, Heiss G. Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 1997;131:115-25.
8. Gregg EW, Sorlie P, Paulose-Ram R, et al. Prevalence of lower-extremity disease in the U.S. adult population ≥ 40 years of age with and without diabetes: 1999-2000 National Health and Nutrition Examination Survey. Diabetes Care 2004;27:1591-7.
9. Dormandy JA. Epidemiology and natural history of arterial diseases of the lower limbs. Rev Prat 1995;45:32-36. 10. Hirsch AT, Halverson SL, Treat-Jacobson D, et al. The Minnesota Regional Peripheral Arterial Disease Screening Program: toward a definition of community standards of care. Vas Med 2001;6:87-96.
11. Feringa HH, Karagiannis SE, Schouten O, Vidakovic R, van Waning VH, Boersma E, Welten G, Bax JJ, Poldermans D. Prognostic significance of declining ankle-brachial index values in patients with suspected or known peripheral arterial disease. Eur J Vasc Endovasc Surg 2007;34:206-13. 12. Leng GC, Fowkes FG, Lee AJ, Dunbar J, Housley E, Ruckley CV. Use of ankle brachial pressure index to predict cardiovascular events and death: a cohort study. BMJ 1996;313:1440-1444.
13. Agnelli G, Cimminiello C, Meneghetti G, Urbinati S; the Polyvascular Atherothrombosis Observational Survey (PATHOS) Investigators. J Thromb Haemost
2006;4:2599-606.
14. Menke A, Muntner P, Wildman RP, Dreisbach AW, Raggi P. Relation of borderline peripheral arterial disease to cardiovascular risk. Am J Cardiol 2006;98:1226-30.
15. McDermott MM, Liu K, Criqui MH, Ruth K, Goff D, Saad MF, Wu C, Homma S, Sharrett AR. Ankle-brachial index and subclinical cardiac and carotid disease: the multiethnic study of atherosclerosis. Am J Epidemiol 2005;162:33-41.
16. Vascular Disease Foundation. New report highlights great unmet need in the diagnosis and treatment of peripheral arterial disease (PA).
http://www.vdf.org/pressroom/pr_pad_unmetneed.php

Author Information

James F. Reed, III, PhD
Senior Biostatistician, Academic Affairs and Research, Christiana Care Health System

