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Abstract

Wavelet-based denoising methods have the advantage over low-pass filtering in that relevant detail information is retained,
while small details due to noise are discarded. This paper reports a novel technique of removing noise, using a wiener filter in
wavelet domain, from an fMRI data and display selectively event related voxels in a spatial domain.

After the fMRI signal is wavelet transformed to temporal domain, its median and mean become symmetric as described in
Section and its median of absolute deviation (MAD) is calibrated with the standard deviation of a Gaussian distribution to
approximately determine the standard deviation of the noise in the fMRI signal. Once the noise level is determined, the result is
used to determine the power spectrum of the coherent signal and the corresponding standard variable. The whole process is
used to accurately estimate the power of the coherent signal and the associated noise at a given voxel location. The estimated
power spectrum is used to approximate the optimal wiener filter coefficient for removing the noise from the fMRI signal.

In this experiment, only the signal to be restored is available and all prior knowledge about the ideal signal has to be estimated
from it. Though an fMRI is contaminated by both Gaussian and Rician distribution related noises, it is safe to assume noise in an
fMRI signal to be additive white Gaussian noise. In this paper, we showed that the power spectrum estimated from this single
copy of degraded signal is a true power spectrum of the signal, and as a result, the restoration filter or noise removing filter is
optimal, though there is a lack of accurate prior information. The method successfully removes noises and exposes activated
voxels in fMRI signal all the time as shown in this paper.

INTRODUCTION example, slow phase variations in the MR images due to

Each activity a person performs is managed by a certain respiration movements, cardiac and other physiological

location of the brain. The location of a brain directly related ~ Processes, patient movement, and local changes in the

to an activity can be visualized using images from functional ~ Magnetic field due to scanner instabilities. During fMRI
image acquisition process, high frequency components like
heart rate (0.6 —1.2 Hz) and respiration (0.1 — 0.5 Hz) are

under sampled with typical repeat times (TRs ) of 3 to 7s and

magnetic resonance imaging (fMRI) instrument. These
images are obtained using the changes between active and

non-active state of location of a brain. The image contrast

obtained this way is very small, and fMRI instrument is so can, according to Nyquist's theorem, be expressed as low-

sensitive that it picks unwanted signals or noise, that induce frequency (0.1 Hz) signal components or aliased higher

distortions of the actual experimental signals, which can be frequency signals [,].
interpreted as false brain activities. The objective of this - TP . .
P J Due to the fact that Rician distribution is used in the physics

paper is to remove noise or distortions, which are unrelated . . P
of magnetic resonance and the Gaussian distribution in

to the experimental fMRI signals. The methods, both . . . L .
functional neuroimaging, the noise, in the blood oxygenation

dependent (BOLD) response of an fMRI data, is both

Gaussian and Rician distributed. For high SNR fMRI data,

Rician distributed noise is symmetric, thus, can be

periodic discrete and translation invariant packet wavelets
are suggested to remove noise from fMRI data due to their
decorrelating effects in a temporal domain.

The main sources of noise are not fully understood. A considered as Gaussian distributed. For low SNR fMRI data,
number of possible sources have been suggested, for there is a difference between Gaussian and Rician distributed
noise, i.e, an image with low intensity and Rician distributed
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has probability density which is asymmetric. It was further
shown that the difference between two Rician distributed
images is symmetric and Gaussian distributed. Since an
fMRI BOLD response is the difference between two BOLD
responses, the active and passive state, thus, the noise in the
resulting BOLD response is symmetrically distributed,
which is characteristic of Gaussian distribution.

To remove noise from an fMRI signal, general wavelet
method is presented. This method decorrelates and extracts
noise from a BOLD response leaving a clean event related
BOLD response of the fMRI data. To remove the noise, first,
the noise is decorrelated and then the intensity of the noise is
estimated statistically. Second, the estimated noise is
removed from the fMRI data in a temporal domain. The
wavelet methods, both periodic and packet based wavelets, a
wiener filter is used with coefficients estimated from the
noisy fMRI data adaptively. A wavelet transform
approximately acts as a detrender, which facilitates the
removal of noise from fMRI data in a temporal domain
without affecting an event related BOLD response. Real and
simulated fMRI data is used to confirm that the methods
remove noise and preserve activities related BOLD response
of an fMRI data.

After denoising, to reduce the false discovery rate, clustering
is performed in spatial domain based on optimal minimal
cluster size obtained from Monte Carlo simulation for a
user-defined confidence level. In this work, it is shown that
the suggested methods can recover a signal from a data with
a noise that has intensity of any standard deviation away
from the center of the data but an optimal performance is
obtained when the noise level is less than seven standard
deviations from the center.

MODELING OF FMRI DATA

Overall, we need to model and remove deterministic
components from the time series before proceeding with the
statistical analysis. The fMRI signal y, (t) at point M in the
brain is given by:

Y =0,x(t) + n(t) (Eq 3.1)

Where n(t) is stationary Gaussian noise, — [, is a scalar that

measures the strength of the response at the voxel M. When
we process y,,(t) using wavelet filtering and the resulting

equation will be:
Wy..(0) = WI_x(t) + Wn(t) (Eq 3.2)

where W is coefficient of wavelet. Note : y, (t) can be

extended to accommodate 2-D by deriving the locationM of
Ym(t) from the row or column of the 2-D fMRI image and
processing each row and column as separate time series and
combining the final result. Equation 3-2 makes the noise
uniform, i.e, N (0,]° ), throughout the fMRI time series.
Once the noise is uniform, it is easy to remove it. During the
noise removal process, the temporal behavior of the voxel
time series is used to remove noise, i.e., the temporal domain
decorrelates the noise and the noise level or standard
deviation of the noise can be estimated and used in the noise
normalization process to determines the coherent signal as
described later.

BACKGROUND

Statistical Parametric Mapping (SPM) tool and many
research works use Gaussian filtering to remove nosie from
an fMRI data. Gaussian filtering is low-pass filtering, that is
being used traditionally to process fMRI data, but it can
remove relevant detail information. Gaussian filtering
requires a window or a kernel size to be derived from the
fMRI data itself to avoid processing errors . The other most
widely used methods are Fast Fourier Transform (FFT) and
SPline, but FFT unable to identify sharp transient events that
are similar to fMRI data,. SPline is FFT and wavelet based,
its sharp frequency characterization makes a good fit to
process an fMRI or time related signall[,] but it needs
optimization [,].

Most of the existing literatures suggest performing both the
analysis and filtering in the time domain or temporal
domain, and after the analysis phase in the time domain, an
inverse transform is applied to reconstruct an activation map
from the coefficients that are designated as significant.
While this reconstructed map is very useful for visualization
purposes, it does not have a direct statistical interpretation,
that is, the statistical parameters, such as, t or z values are
computed in the time domain and there is no straightforward
way to map the statistics to the spatial domain.

In this paper both statistical analysis and filtering are
performed separately, this approach helps optimize the
detection of false positive active points of the voxel time
series.

METHODOLOGY - ESTIMATION OF NOISE AND
ITS REMOVAL FROM FMRI

For a continuous variate x, the median Ml defined, using the
(cumulative) distribution function F(x), by the condition:

F(m)=1%(5 1)
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This means that one half of the observations are below and
the other half above the median. For a sample of ordered
variables X,X,, ...X, the sample median, denoted as ml =
median {x,;} is given by (with integer k ); Note : these
ordered variables are fMRI time series high passed using
wavelet, and decimated.

Figure 1

N k={n=1){2 for n odd
m=11 i fn P t.Ft-l 57
= X + Xy =nil o noooeven

MAD = med{lx; - mll} fori=1,2,...,n (Eq. 5.3)
For a normal distribution, the probability density function is

Figure 2

1 _
pX)=—mme = © (Eq.54)

As for any symmetrical distribution, mean and median
coincide, thus u = ml. In addition, we assumed fMRI mean p
is centered at zero (0); thus MAD = median{Ixl}. According
to (5 1) we then have to evaluate the limits, -] and +[, for
which [ PpPx)=%20R I p(x) = ¥ which gives the numerical
solution [ = 0.6745, and thus MAD can be linked, for a
normal distribution, with the average standard deviation [(x)
of a single observation x, by MAD = [I(x) which is
MAD/0.6745 =[(x); Through out this work this relationship
is used to estimate noise for 1-D and 2-D fMRI signal at
each voxel location. It is shown that the noise estimated this
way is almost the same as known noise level, i.e., when
adding a known noise level to a signal and filtering using
wiener filter as specified in this paper has the same effect as
estimating the noise and filtering it the same way.

The DICOM data with activation points is collected form
patients and transformed into AFNI [,] format. The signal
from AFNI is processed as specified below and ported to
AFNI for visualization and wavelet processed to determine
the activation points in the brain and to compare and contrast
the processed signal with othe fMRI processing methods.
The wavelet filter used is symmlet with size four(4). The
procedures employed to separate the coherent signal form
the noise are as follows:

1. For processing 1-D fMRI data :Divide the signal
into 1-D representations or into 1-D time-series; if
the 1-D signal is not power of two, padding with
zeros several hundred positions is necessary

2. For Processing 2-D fMRI data: Divide the 3D

fMRI data into slices and if the size of a slice is not
power of two, padding with zeros several hundred
positions is necessary

. Wavelet decompose the fMRI signal, this step

makes the noise distribution N(0, [2)

a. Decompose the fMRI data into discrete
wavelet coefficients (wi)

b. Decompose the fMRI data into packet
wavelet coefficients (wi)

. Estimation of the noise level [ from its distribution

N(0, [2): [ = MAD(wi) / 0.6745 for both periodic
discrete and packet wavelets, separately

. Select the representative coefficients - wj form the

wavelet packet coefficients - wi of step 2b; to
select the representative coefficients, Shannon
entropy is used . The selection process involves the
following steps :

a. Start from the bottom of the
decomposition tree and mark every thing

b. Determine the entropy of each element of
the tree, and then if the entropy of a
parent node is less than or equal to the
sum of entropy of its the two children,
them unmark the children and mark the
parent, otherwise leave the children
marked, continue this way until you
reach the top. Shanon entropy is
determined using the formula E(X) = -
Inpnlog2pn), where pn = (xn)2/ lIxI12,
where xn is the nth component of x, lIxll
is the signal length and E(X) is the
entropy of the fMRI signal x.

. Normalize the noise in the temporal domain to

make the noise distribution N(0,1) : wi = wi/ll for
discrete wavelet and for packet wavelet wj = wj /[,
and [ is a result from discrete or packet wavelets
used in step 4

. Determine the coefficient of wiener filtering of the

wavelet coefficient: [| = Iwi 2| / (Iwi 2| + [12I) for
discrete wavelet and for packet wavelet [ = lwj 2| /
(Iwj 21 + 1021y
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10. Get the wavelet coefficients from the noisy fMRI
time series and or slice from step 3, and then apply
wiener filter from step 7 to determine the clean
wavelet coefficients: wi clean = willl

11. Reconstruct the clean wavelet coefficient (wi clean
) into an fMRI time series or slice

12. Go to step 3 and repeat the steps until the entire
time series or fMRI slices are processed.

RESULTS

The brain processes different information in different way,
for example, when the subject was instructed to process
items according to their meanings ( is the word hot or cold ?)
or when the subject is instructed to perform bilateral finger
tapping at a set of interval of time. The former task was
associated with activations in a set of brain regions including
left lateral prefrontal cortex (PFC) and left medial temporal
cortex. The latter showed relatively greater activation in
right and left PFC.

The mapping of functions to brain regions presupposes,
among other things, a thorough understanding of the
cognitive functions that are to be mapped onto the brain
regions. This understanding, however, while developing, is
still rudimentary. Someone with schizophrenia, when
confronted with a psychological task, might tackle it in a
very different way, in terms of the cognitive strategies used,
and from a healthy person confronted with the same task.
The observation that brain activity differs across the two
individuals would only be interpretable insofar as one
thoroughly understood the processes that each individual
invoked in response to the task demands.

Recent studies have found that the spatial extent of fMRI
activation in healthy older adults is approximately half that
of younger subjects, for both visual and task related
activities. Also, it is very important to note this fact: the
difference, in activation, between healthy older and young
subject, is not associated with reduced hemodynamic
response (HDR) amplitude in older subjects, because young
and elderly adults have similar HDR amplitudes [;], and
have similar distributions of HDR amplitudes across voxels.
Furthermore, greater head motion in the elderly does not
cause this difference, although head motion differences can
affect spatial extent of activation [;]. Instead, spatial extent
differences are associated with higher voxelwise noise levels
in elderly adults, perhaps due to changes in cardiac or

respiratory effects upon the fMRI signal .

In this experiment no comparison across subject is
performed and an individual subject data is analyzed
independently, and the subject was instructed to perform
bilateral finger tapping as brain activation mapping of this
action can be seen on both sides of lateral prefrontal cortex,
and this finding, Figure ,is consistent with theoretical basis
of neural functions for a healthy individual, the complete
result of the processing an fMRI obtained from a healthy
person is shown in Figure.

Figure 3

Figure 1: Cluster of Activation Points when the subject is
finger tapping
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Figure 4

Figure 2: Cluster of Activation Points when the subject is
finger tapping generated using euclidean distance and
minimum cluster size.

Shcel Sfice 2 Slice 3

The other most important thing to notice is, during the
experiment, sometimes the well instructed subjects do all
kinds of things in addition to the task they were asked to
perform and this showed up in the fMRI images, as seen in
Figure, and interpretation of the results should take into
consideration this kind of events. Furthermore, the best
strategy is to mask the data to include only the areas or
regions that corresponding to the activities in the brain.
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