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Abstract

Specific individual face recognition in the brain has been demonstrated with analysis of three dimensional neural activation
patterns – cognitive engrams – revealed by functional magnetic resonance imaging (fMRI). Individual faces can also be
differentiated by biometric pattern recognition from camera images using biometric analysis.   A correlation between face
recognition data obtained from these two methods is now documented.  A two way correspondence between face data obtained
by these and other means exists, which should facilitate face recognition, the utility of interrogation, and further the
understanding of cognition.

INTRODUCTION

Since 2006, it has been known that widely arranged brain
cortical response patterns elicited by individual face images
with high-resolution functional magnetic resonance imaging
(fMRI) can be used to discriminate between unique faces
(1).  This work has been independently validated by other
research laboratories (2,3). Face activation patterns obtained
by fMRI are known to be related to and vary with the
structure of the face (4) and these variations are consistent
across individuals.

Cognitive engrams refer to multi-dimensional
representations of brain activation in response to specific
stimuli (1).  Cognitive engrams can be arranged into a
[Rosetta] database which relates the Cognitive Engrams and
other associated data to specific mental concepts, i.e., a
visual representation of actual memory patterns.

Faces can also be analyzed and correlated with their physical
features (5,6,7).  Relative sizes and distances for facial
landmarks such as the eyes, nose, ears, chin, and skin
texture, among others can be measured. Face data can be
extracted from camera images, or from video streams.
Principle methods for biometric face analysis are geometric,
which is feature based, and photometric, which is view
based. Many different algorithms for face analysis have been
developed, including principal component analysis PCA,
linear discriminant analysis LDA, elastic Bunch graph

matching EBGM, and more recently deep-learning (DL)
based non-linear feature extraction methods.

Face structure, as are all of our physical characteristics, are
coded within DNA. Claes et al. (8) used extensive modeling
methods to determine the relationships between facial
variation and the effects of sex, genomic ancestry, and a
subset of craniofacial candidate genes. Their modeling could
lead to approximating the appearance of a face from genetic
markers alone.

Knowing that face recognition by fMRI and by biometrics
both depend on the physical differences between individual
faces, a correlation of face recognition from these two
different data sources was studied and reported herein. 

METHODS

Overall, the steps used in this study are:

Test subjects view pictures of face, object, or
concept, or has other visual or auditory stimulation,
while undergoing functional neuroimaging,
Functional neuroimaging data is collected,
3-D Activation map is constructed, which
constitutes the specific Cognitive Engram for the
face / object imaged,
Collection of activation maps is added to a
(Rosetta) Database of activation maps
The same faces used for generating fMRI
activation maps are examined by (video) camera,
and a biometric analysis is generated,
One-to-one correspondence is made between the
fMRI activation map (the facial cognitive engram)
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and the biometric data.

PREPARATION OF FUNCTIONAL MR IMAGING
ACTIVATION MAPS / COGNITIVE ENGRAMS OF
FACES

3-D activation maps using fMRI can be prepared, as
previously described (1). Briefly, normal volunteers are
shown faces by rear projection screen or other methods
(such as video projection goggles) while the test subjects are
undergoing functional MR imaging. 

To perform fMRI, each test subject lays within a GE Cigna
3-T Signa 11X Excite MRI scanner, wearing a phased array
whole head coil, mounted with a 45 degree mirror. This
arrangement allowed test subjects to see images displayed
onto a rear projection screen positioned by their feet. fMRI
was performed while viewing the test stimuli it order to
capture functional data, as described by Marks et al (1). A
short localizer MRI scan was performed to verify that the
field of view was within the skull, and to assure the absence
of “ghost” images. A high-resolution full volume structural
MRI scan was then obtained for each subject, using fast
SPGR imaging (146, 1.0-mm thick axial slices, no spaces,
TR = 8, TE = 3.2, FOV = 24 cm, 256 £ 256 matrix). These
T1-weighted images provided detailed anatomical
information for registration and 3-D normalization to a
standard atlas.

Test subjects were then shown photos / images generated by
PC using PowerPoint (Microsoft) and projected onto a rear
projection screen placed at the foot of the test subject, as
described in Marks et al (1). Pictures were viewed by means
of a mirror system mounted on the head coil.

Changes in the blood oxygen level dependent (BOLD) MRI
signal were measured using a gradient-echo echoplanar
sequence. The following sequences were used, but variations
are available. Continuous fMRI scans lasted 110 seconds
each. EPI parameters were: TE 35, TR 2000, multiphase
screen, 55 phases per location, interleaved, flip angle 90,
delay after acquisition-minimum. Using a visual stimulus
package, color photographs were presented in a mini-block
design while neuroimaging was performed. In a typical
session, after a 4 second lead-in time, a blank screen was
displayed for 4 seconds, then the picture of interest for 4
seconds, and this was repeated for the scan time.

The fMRI scan volumes were motion-corrected and spatially
smoothed in-plane. MRI data files were normalized and
analyzed using MedX (version 3.4.3, Sensor Systems,
Sterling, VA) to compute statistical contrasts and create a

map representing significantly activated areas of the brain
that responded differentially to a visual test stimuli.

For the voxels that show an overall increase in activity for
meaningful stimuli, a positive regression analysis for the
contrast between a test photo and control (blank page)
stimuli was conducted, creating an activation map containing
specific voxels with an uncorrected probability, P ≤ 0.05;
meaning every voxel showing activation with the probability
greater than 95%. Only those activated voxels were selected
for further analysis. That statistical map was then
superimposed on coplanar high-resolution structural images.
The partial volume structural images were registered with
the full volume high-resolution images using Automated
Image Registration (9). Those full volume high-resolution
images were then transformed (registered and normalized) to
the Talairach and Tournoux atlas (10) using MedX tools.
Each activated voxel on these images was selected to obtain
Talairach coordinates of brain regions that respond
maximally to the test stimuli and to further generate a
Cognitive Engram. Comparison of observed patterns of
activation were correlated with the nature of the response,
such as face recognition, or a truthful or deceptive response

Three dimensional graphical representations of the identified
activation maps were constructed by plotting the xyz
coordinates, using the program DPlot (HydeSoft Computing,
Vicksburg, MS). 

PREPARATION OF BIOMETRIC DATASETS OF
FACES

The same photographs of faces used to prepare fMRI data
were then introduced to a biometric system. Ayonix
Corporation (Tokyo, Japan) software was used, but other
commonly available biometric systems should work as well.
Biometric face data sets were then generated.

The Ayonix face extraction model uses customized HOG-
like (Histogram of Oriented Gradients) features on a high
number of overlapping face regions to reduce the effects of
noise, viewing angle, aging, facial expressions and
occlusions. This software extracts features from the whole
face together, however, each feature window is aligned onto
one of the facial landmark locations extracted in the pre-
processing step. This way, the Ayonix software encodes both
local and global information about the face geometry and
appearance. The Ayonix software is constructed by training
models on hundreds of thousands of faces from different age
groups, genders and races, with different viewing and
lighting conditions; thus appearance differences between
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different groups of people (ie. European and Asian) are
inherently encoded in the feature extraction step of that
software.

Skin color is not taken into account with the Ayonix
software, and the images are converted to grayscale before
processing. Following is a general outline of steps used to
create face biometric data sets using Ayonix software:

Step 1. Face pre-processing

- Face is detected by face detection engine

- Face region is cropped and resized to a fixed image

- Face region is converted to grayscale

- Facial landmarks are extracted on the face

- Geometric alignment is performed

- Lighting effects are corrected

- Facial quality is measured

Step 2. Face feature extraction

- Face features are extracted from overlapped areas on
detected facial landmarks

- Feature normalization and corrections are performed

- Features are transformed into recognition space using the
Ayonix engine

CREATION OF CORRESPONDENCE GRID:

A one-to-one correspondence grid was constructed (Figure 1
and Table 1). The two components were fMRI consensus
activation points and biometric face data, arranged by each
of the five static faces used in this study. Correspondence
was made using regression analysis and other mathematical
analyses.

RESULTS

Using data from fMRI and biometrics, a one to one
correspondence grid was constructed. A graphical
illustration of the process is shown in Figure 1.  The
correspondence grid is shown in Table 1.  The data for fMRI
was previously provided (1).  The face biometric data sets
are embedded into Figure 1.

Figure 1

Table  1 is a table of data in various formats illustrating how
correlated data on brain activation obtained from functional
MR imaging while viewing specific visual stimuli correlates
with the biometric data obtained using facial recognition
software.

Table 1

Table  1 is a table of data in various formats illustrating how
correlated data on brain activation obtained from functional
MR imaging while viewing specific visual stimuli correlates
with the biometric data obtained using facial recognition
software.

DISCUSSION

A wide multivoxel activation pattern (1,17) is seen with
fMRI during object and face recognition.  As noted in prior
publications, and in an issued patent (18), these object-
specific or concept-specific activations are referred to as
Cognitive Engrams.  Cognitive Engrams may reflect
neuronal population codes (1,17,18).  Marks et as and Muir
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(17) have previously shown (1,18) that Cognitive Engrams
possess representational content. Various researchers,
including Marks (1) and later by Kriegeskorte (2) and others
have shown that fMRI activation data can be interpreted to
identify individual, specific representational content, such as
faces, unique objects, emotions, truthful and deceptive
statements to questions, and other cognitive content

It is know that face recognition by biometric analysis (5) of a
picture of a face is very dependent on the structure of the
face.  Similarly, there is evidence that face representation by
fMRI is also dependent on facial geometry. Loffler et al.
(11) found evidence that neural activation patterns for
individual faces are encoded as grouped data. This encoding
varied on the direction (facial identity) and distance
(distinctiveness) from standard or prototypical (mean) face.
Loffler et al found that varying facial geometry (head shape,
hair line, internal feature size and placement) caused the
corresponding fMRI signal to increase with increasing
distance from the mean face. Loffler also determined that the
same neural population will respond to faces falling along
single identity axes within this space. Boccia (12) found that
the pattern of activity in most of these areas specifically
codes for the spatial arrangement of the parts of the mental
image

Rotshtein et al (13) found that fMRI of varying facial
content demonstrated differential activity in critical face
recognition areas of the brain.  The inferior occipital gyrus
(IOG) showed sensitivity to physical rather than to identity
changes.  The right fusiform gyrus (FFG) showed sensitivity
to

identity rather than to physical changes. Bilateral anterior
temporal regions show sensitivity to identity change that
varies with the subjects' pre-experimental familiarity with
the faces. These findings supported differential activity
within the brain taking part in distinguishing varied facial
content.
Rotshtein et al (4) used fMRI to study how the brain
processes featural information and second  order spatial
relations in face identity processing. Features included eyes,
mouth, and nose. second-order spatial relations were
measured between face features.  They found that feature-
dependent effects occurred within the lateral occipital and
right fusiform regions of the brain. Spatial relation effects
occurred in the bilateral inferior occipital gyrus and right
fusiform.  Overall, Rotshtein et al found that featural and
second-order spatial relation aspects of faces make distinct
contributions to behavioral discrimination and recognition.

Face features contributed most to face discrimination,
whereas second-order spatial relational aspects correlated
best with recognition skills. These results support ongoing
findings employing fMRI for face recognition tasks.

Rotshtein et al (14) then used "hybrid" faces containing
superimposed low and high spatial frequency (SF)
information from different identities. They found that
repetition and attention affected partly overlapping
occipitotemporal regions but did not interact. Changes of
high SF  faces increased responses of the right inferior
occipital gyrus (IOG) and left inferior temporal gyrus (ITG),
with the latter response being also modulated additively by
attention. In contrast, the bilateral middle occipital gyrus
(MOG) responded to repetition and attention manipulations
of low SF. A common effect of high and low SF repetition
was observed in the right fusiform gyrus (FFG). Follow-up
connectivity analyses suggested direct influence of the MOG
(low SF), IOG, and ITG (high SF) on the FFG responses.
Overall, their results showed that different regions within
occipitotemporal cortex extract distinct visual cues at
different SF ranges in faces and that the outputs from these
separate processes project forward to the right FFG, where
the different visual cues may converge. These results support
ongoing findings employing fMRI for face recognition tasks
and illustrate how analysis of differential brain activation
demonstrates differential recognition of faces

Cohen et al (22) demonstrated that individual face images
could be accurately reconstructed from distributed patterns
of neural activity, even when excluding activity within
occipital cortex.

Miyakawi et al (23) and Schoenmakers et al (24) showed
that image reconstruction can occur based upon the brain
activation pattern data alone, without the need for prior
internal pattern references. Nishimoto et al (25) were able to
interpret dynamic brain activity (viewing of movies) using a
motion-energy encoding model and a Bayesian decoder.  

In essence, three dimensional activation patterns from wide
areas of the brain are formed into patterns which are equated
back to the stimulus for the activation (face, object, concept,
emotion). Ultimately, all activation patterns in three
dimensional space form unique data sets specific for the
object or concept under consideration – Cognitive Engrams
(1).

Analysis of faces by means of biometrics has its own
complex art and science, as described elsewhere. Just as with
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visual recognition by the human eye, biometric systems
depend heavily on differences in face structure, tone and
other characteristics. There are a number of methods to
analyze complex fMRI face activation data, including:
sparse logistic regression (15), feature vectors (16) using a
support vector machine algorithm; quantitative receptive-
field models (3), multivoxel pattern information analysis
(17), direction and distance from a prototypical (mean) face
(11), partial least squares (19), and others. These methods
are described in the referenced articles. 

EVIDENCE FOR REVERSE LOOKUP = MIND-
READING, A FORM OF REVERSE LOOKUP =
MIND-READING.

Cox (20) used multivariate statistical pattern recognition
methods, including linear discriminant analysis and support
vector machines, to interpret activation patterns of fMRI.
Test subjects looked at categories of objects, rather than
specific variations within a class. They were able to
determine within some degree of experimental error which
category (as opposed to unique individual) of object or
picture their test subjects were looking at.

Thirion (21) used retinotopy of the visual cortex to infer the
visual content of real or imaginary scenes from the brain
activation patterns that they elicit. 

Yamashita (15) used a novel linear classification algorithm,
called sparse logistic regression (SLR), to automatically
select relevant voxels while estimating their weight
parameters for classification. Using simulation data, they
confirmed that SLR can automatically remove irrelevant
voxels and thereby attain higher classification performance
than other methods in the presence of many irrelevant
voxels. These patterns of activatated voxels formed what can
best be described as cognitive engrams, which can be used to
predict or decode fMRI activity patterns. SLR also proved
effective with real fMRI data obtained from two visual
experiments, successfully identifying voxels in
corresponding locations of visual cortex. SLR-selected
voxels often led to better performance than those selected
based on univariate statistics, by exploiting correlated noise
among voxels to allow for better pattern separation.  

Extensive research in the published scientific literature,
patent sources and internet indicate that a two-way lookup
between fMRI and biometric data is a unique, original and
not previously explored approach to face recognition.  

This concept further allows the practical interpretation of
thoughts, emotions, feelings, intents using neuroimaging
data. The reverse lookup concept allows the categorization
and compiling of thoughts in the Rosetta Database, and ways
to store and retrieve cognitive engrams. Correlation of
individual biometrics to specific thought patterns via
functional neuroimaging will further the identification of
individuals and the interpretation of their associated
concepts and intents.
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