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Abstract

There is a growing number of beta-lactamase extended spectrum bacteria, which inactivate a wide variety of beta-lactam drugs
(ESBLs), including third-generation cephalosporins, penicillins, and monobactams, which are commonly identified in nosocomial
infections. Genetic variability and molecular approaches have been widely used for bacterial phylogeny and have been applied
in bacterial identification. The bacterial isolates were obtained from June 2014 to December 2014 in a second-level hospital in
the state of Boyacá-Colombia. Phenotypic identification was performed using the BioMerieux VITEK-2 system® following the
standards of the Institute of Clinical and Laboratory Standards. ESBLs genes, including TEM, SHV, CTXM and AmpC, were
analyzed, and 11 strains with drug resistance were analyzed. From the isolates, 100% expressed the blaCTX gene, while 18.2%
expressed blaSHV and 27.3% expressed blaTEM. The researchers observed two different amplifications of AmpC genes, one
that was 170 bp and the other that was 500 bp. The first had a frequency of 100% in the samples and the second had a
frequency of 63.6%. Bioinformatic analysis was performed for each sequence. ESBLs-producing strains are considered a major
problem due to multi-drug resistance, their implications in nosocomial outbreaks, and their tendency to spread rapidly
throughout the world. Therefore, they are considered important clinical markers; consequently, the knowledge of incidence and
origin play an important role in the selection of appropriate treatment.

INTRODUCTION

With the widespread use of broad-spectrum antibacterial
agents, the resistance problem continues to worsen. Such
disproportionate use generates an increasing number of
bacterial strains producing extended-spectrum beta-
lactamases (ESBLs) (1). These enzymes inactivate a wide
variety of beta-lactam drugs, including third-generation
cephalosporins, penicillins, and monobactams (2-4).
Molecular characterization of these resistance genes has
shown a high rate of mutations in the genes that alter the
amino acid configuration around the active site of these
enzymes (5, 6). Therefore, approximately 200 different
natural ESBLs variants, such as 73 TEM-family ESBLs, 46
SHV types, 37 CTX-M types, 18 OXA types, and 20 other
ESBLs have now been identified (7-12). In general, ESBLs-
producers are resistant to all penicillin, cephalosporin, and
monobactam antibiotics (13). For this reason, these enzymes
have spread dangerously in large geographic regions (8).
The success of this dissemination is probably due to the
horizontal transfer of resistance genes (blaTEM, blaSHV,
etc.), often-carried in self-transmissible plasmids or mobile

elements, which able to spread horizontally between and
within species (14, 15). For example, plasmid-mediated
CTX-M type expanded-spectrum beta-lactamases (ESBLs),
which have been extensively reported for the past 10 years,
are detected mostly in community-acquired pathogens and
are associated mainly with Escherichia coli (E.coli) (16, 17).
According to Villegas et al (18), there are major differences
in the world in the incidence of infections caused by ESBL-
producing organisms, especially when comparing
industrialized with developing countries. Several reasons
may account for this disparity: (i) poorer social and
economic conditions; (ii) crowded hospitals, frequently with
high patient ⁄ nurse ratios; (iii) self-prescription of
antibiotics, which are sold over the counter in most of South
America; and (iv) deficient hospital hygiene, resulting in
high rates of colonization and infection with Klebsiella spp.
This last factor is very important because Klebsiella spp.
have a particular ability to acquire plasmids determining
ESBLs production (18). In Latin America, there is a high
rate of ESBLs, although their distribution is still restricted to
some genes and to specific locations (18). In Colombia, as
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reported by CIDEIM, values ranging from 8 to 11% in E.
coli and 20-30% in Klebsiella pneumoniae (K. pneumoniae)
ESBLs phenotypes (19) were described as the first
cefotaxime type ESBLs (CTX-M-12) in the country (20).

The Infectious Diseases Society of America (IDSA) grouped
some species of bacteria in the term Eskape: vancomycin-
resistant Enterococcus faecium (VRE), methicillin-resistant
Staphylococcus aureus (MRSA), extended spectrum beta-
lactamase producing K.pneumoniae (ESBLs), Acinetobacter
baumannii (A. baumanni), Pseudomonas aeruginosa (P.
aeruginosa) and Enterobacter spp., as these species cause
public health problems such as high rates of morbidity and
mortality in hospitals (21). These bacteria cause a variety of
human diseases, including 30% to 35% of all septicemias,
more than 70% of urinary tract infections, and many
intestinal infections (22, 23).

Since antibiotic prescription patterns vary in different
regions, the prevalent genotype of ESBLs is variable (12).
Phenotypic variability among strains belonging to the same
species also results in some bacterial isolates presenting
characteristics that are atypical for a candidate identification.
Therefore, accurate identification of bacterial isolates is an
essential task for clinical microbiology laboratories (24, 25).
Molecular approaches have been extensively used for
bacterial phylogeny and have been applied to bacterial
identification, including that of environmental and clinical
uncultured microorganisms, unique or unusual isolates, and
collections of phenotypically identified isolates (24, 26). The
aim of this study was to investigate the presence of ESBLs
in clinical isolates of ESBLs-producing gram-negative
bacilli. Susceptibility to beta-lactam antimicrobials was
examined, along with phenotypic analysis of the isolates
based on the presence/absence of inducible AmpC beta-
lactamases and the genotypes of four ESBLs (bla TEM,
blaSHV and bla CTX M). AmpC and 16S rDNA genes were
recovered from clinical samples of a hospital center of
Boyacá, Colombia.

MATERIALS AND METHODS

Ethics statement

The observational, descriptive cross-sectional study was
conducted in the Molecular Epidemiology Laboratory of
Universidad de Boyacá, Colombia. The study was
considered as low risk and was approved by the ethics
committee at Universidad de Boyacá. The research study
was classified as safe in accordance with 008430 of 1993
resolution of Ministry of Health and Social Protection

(Colombia). The study always maintained ethical standards,
scientific techniques, and administrative norms for health
research from Colombia's Ministry of Social Protection,
resolution N° 008430 of 1993. The relevant ethical issues in
this study were, that the patient was not directly involved,
nor was the patient's name, and the clinical information was
limited, since the completion of procedures per patient was
not required. Thus, informed consent was not necessary.

Bacterial strains

A total of 458 bacterial isolates were collected from June
2014 to December 2014 in a second-level hospital in the
Boyacá state, Colombia. Identification of the isolates was
performed by the BioMerieux VITEK-2 system. Resistance
phenotypes of the ESBLs and carbapenemases were
confirmed following the standards of the Clinical and
Laboratory Standards Institute (CLSI). E. coli strain ATCC
25922 was used as a sensitive control strain, and K.
pneumoniae strain ATCC 700603 was used as ESBLs
producing positive control strain.

Antibiotics and drug susceptibility tests

The following antibiotics were provided by CLSI
recommendations: piperacillin/tazobactam and
sulbactam/cefoperazone (Toyama Chemical Co., Ltd.,
Toyama, Japan); cefazolin, cefuroxime, cefotaxime, and
cefepime (Farbwerke HoechstAG, Frankfurt, Germany);
cefoxitin, ceftazidime, amikacin, gentamicin and
levofloxacin (Sigma Chemical Co., St. Louis, Mo);
clavulanate (SmithKline Beecham Pharmaceuticals, Surrey,
United Kingdom); imipenem and meropenem (Banyu
Pharmaceutical Co., Ltd., Tokyo, Japan).

In the drug susceptibility test, fifteen agents
(Sulbactam/Cefoperazone, piperacillin/ tazobactam,
cefazolin, cefuroxime, ceftazidime, cefotaxime, cefepime,
cefoxitin, imipenem, meropenem, amikacin, gentamicin and
levofloxacin) were determined by the broth dilution method
according to CLSI recommendations. ESBLs, AmpC and
carbapenemase-positive strains should be further conducted
by phenotypic testing. Expression of ESBL was detected by
a double disk test, using ceftazidime, ceftazidime/ clavulanic
acid, cefotaxime and cefotaxime/clavulanate at a distance of
2 cm. The diameter of the zones of inhibition of growth was
recorded and interpreted as sensitive, intermediate resistant
or resistant based on the CLSI guidelines. The interpretation
of the results was considered a positive result, an increased
greater or equal to 5 mm in halo of
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cephalosporine/clavulanic acid to cephalosporin alone. For
the expression of carbapenemases, five antibiotics tests
(Aztreonam, cefepime, ceftazidime, imipenem and
meropenem) were used.

Genotype detection

The DNA extraction protocol started from a single colony
cultivated in MacConkey agar by the exhaustion technique,
with the aim of selecting a unique genetic profile. Bacterial
strains were inoculated into 10 mL of brain heart infusion
broth (BHI) dispensed into Falcon tubes overnight at 37°C in
constant 180 RPM agitation. The Wizard® Genomic DNA
Purification Kit (Southampton, England) was used for
bacterial genomic DNA extraction of all the isolates. DNA
concentration was determined using a micro-volume
spectrophotometer (MaestroNano®).

Amplification of blaAmpC (AmpC-type beta-lactamase),
blaCTX-M1 (CTX-M1 type beta-lactamase), blaTEM
(TEM-type beta-lactamase), and blaSHV (SHV-type beta-
lactamase) was performed using previously described
primers (27). To confirm PCR-based identification results,
comparative 16S rDNA sequence analysis was performed.
Universal bacterial (27F and 1492R) primers (28), were
utilized for PCR amplification of 16S rRNA of gDNA
extractions from all positive isolates. Details for the primers
and PCR conditions are shown in Table 1.

Table 1

Primers and standardized PCR condition used for
amplification of resistance genes and 16S rDNA.

PCR was performed in a 25-mL reaction mixture containing
12.5 mL of 2 X PCR Master Mix (Applied Biological
Materials Inc., Richmond, Canada), 0.4 mM of each primer,
and 1 µL of sample DNA. The PCR conditions used were
initial denaturation at 95°C for 5 min, cyclic denaturation at
95°C for 4 min, annealing at variable temperature (details as
Table 1) for 1 min, elongation at 72°C for 1-2 min for 35
cycles and final extension at 72°C for 10 min in a
thermocycler (Gradient LTCG-48-101 Labocon; Hampshire,
UK). PCR products were detected by a 1% agarose gel.

Positive amplicons were purified by Promega Wizard SV
Gel and PCR Clean-up System (Promega Co., Madison, WI)
and sequenced by Applied Biological Materials Inc.
(Richmond, Canada).

Bioinformatics analysis

DNA sequencing quality was verified using Finch TV ver.
1.4.0 (Geospiza, Seattle, WA, USA). Profiles with
overlapping sequences were discarded. DNA sequences
were annotated using the BLAST program
(http://blast.ncbi.nlm.nih.gov) to identify the gene subtypes.
Homologous sequences identified with a threshold E-value
close to zero and identities > 90% and reference sequences
were retrieved from NCBI RefSeq and GenBank
(http://www.ncbi.nlm.nih.gov/genbank/). All sequences were
manipulated using the Geneious platform (29). The Multiple
sequence alignment was computed by the MUSCLE
program (30). Neighbor-joining (NJ) phylogenetic trees
were constructed with the Bootstrap method (500
replications) and pairwise deletion with the Molecular
Evolutionary Genetics Analysis software (MEGA 6) (31).

RESULTS

Classification and Drug Susceptibility test

Drug susceptibility tests were conducted for 458 bacterial
isolates, and 298 of them were negative cultures. Of the
remaining 160 positive cultures, 12.5% (20/160) were
classified as gram-negative and 87.5% (140/160) as gram-
negative bacteria. Bacterial identification shows that, of the
total of isolates, 80% (113/140) are E. coli, 5% (7/140) are
K. pneumoniae, 3.6% (5/140) are Proteus mirabilis
(P.mirabilis) and 2.1% (3/140) are P. aeruginosa. In a small
percentage (9.3%), other bacterial species as Proteus sp,
Serratia sp, Enterobacter sp, Burkholderia sp, Morganella
and other Pseudomonas sp were identified. This study
indicated that the drug resistance rates of the 160 isolates to
ampicillin, sulbactam, Cephalothin, Cefuroxime,
Cefuroxime Axetil, Cefotaxime and Ceftriaxone were all
high (above 90%). In case of other antibiotics, the sensitivity
rate of Ceftriaxone and Cefepime (9.1%) was lower than that
of Ceftazidime (18.2%).

Detection of ESBLs producing and AmpC producing
strains

Among the 160 isolates classified as gram-negative, 11
strains produced both ESBLs and AmpC enzymes. In the 11
strains with the ESBLs phenotype, the diameters of the
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zones of inhibition of some or all of the substrates were
observed. In addition, the observation of the synergistic
effect produced between the broad-spectrum cephalosporins
and clavulanic acid; confirms this resistance. Of these
resistant strains, 81% (n=9) were isolated from the urine
culture, and most were identified as E. coli (n=8), while 9%
were isolated from the ulcer and wound secretions,
respectively, both of which were identified as P. aeruginosa.

PCR Amplification of resistance genes and Sequence
analyses

To analyze the drug resistance-related genes, PCR
amplification and sequencing analysis was conducted for 11
ESBLs isolates. ESBLs genes, including TEM, SHV, CTXM
and AmpC type, were amplified from P.aeruginosa, E. coli
and K. pneumoniae species that were detected. There were
11 (100%) blaCTX type positive strains, which is related to
the producer phenotype of beta-lactamase extended
spectrum. These results are summarized in the Table 2. The
sequenced analysis of the results by BLASTN showed that
blaCTX-M contained two subtypes, including blaCTX-M-15
(n=9) homologous for E. coli and K. pneumoniae (E value:
0.0; Identity: 100%) and blaCTX-M-2 (n=2) homologous for
P.aeruginosa (E value: 0.0; Identity: 98%).

Table 2

Molecular characterization of multi resistant isolates and
their relationship of origin.

Three (27.3%) blaTEM-1 positive strains that were
homologous sequences with E. coli (E value: 0.0; Identity:
99%) and two (18.2%) blaSHV positive strains that were
homologous sequences with blaSVH-1 subtype of K.
pneumoniae (E value: 0.0; Identity: 99%) and E. coli (E
value: 0.0; Identity: 98%) were observed. Similarly, two
strains of E. coli, which were derived from urine samples
(samples 5 and 7) from an external consult service and sent
to another emergency department, showed amplification of

blaTEM, blaCTX-M, blaSHV and AmpC genes. In the case
of strains identified as P.aeruginosa and K.pneumoniae, an
amplification for AmpC and blaCTX-M genes was
presented, but there was no positive amplification for
blaTEM and blaSHV genes (Table 2); P.aeruginosa has
natural resistance type AmpC, which is encoded in the
chromosome of the bacteria. Additionally, ESBLs encoded
by plasmids, which present two types of b-lactamases, were
observed in the amplifications. The researchers observed two
different amplifications for the AmpC gene, one to 170pb
and another to 500pb. The first has a frequency of 100% in
the samples and the second has a frequency of 63.6% (Table
2). Bioinformatics analyses showed that the 170pb
amplification is a homologous sequence (E value: 5e-41;
Identity: 98%) to triosephosphate isomerase gene of E. coli
and the 550pb is homologous sequence (E value: 0.0;
Identity: 99%) to AmpC of E. coli and AmpC of
P.aeruginosa (E value: 1e-118; Identity: 87%). This analysis
confirms that the 550pb band corresponds to the AmpC
resistance genotype.

Furthermore, 72.7% (8/11) of the PCR products of the 16s
rDNA gene and 27.3% (3/11) mismatch results for E. coli, P.
aeruginosa and K. pneumoniae were obtained. PCR
amplification of the genomic DNA from the extracted
organisms generated an amplicon of the expected size
(approx. 1.4 Kb) for all the bacterial isolates. In
bioinformatics analysis, probable mixed sequences were not
found. A total of 8 samples possessed a 16S rDNA sequence
with >96% similarity to that of a genus member. The
sequence analyses of the results by BLASTN showed that
six are homologous for E. coli (E value: 0.0; Identity:
96-97%), one to P.aeruginosa (E value: 0.0; Identity: 98%)
and one to Staphylococcus aureus (S. aureus)(E value: 0.0;
Identity: 96%).

Phylogenetic analysis

Based on our antibiotic resistance and 16S rDNA gene
sequences, different homologous genes were identified;
which were downloaded from the GenBank database for
phylogenetic analysis (Table 3).
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Table 3

Resistance and 16S rDNA genes-based identification of 11
ESBLs bacterial isolations.

The phylogenetic tree sub classified 11 blaCTX genes into
three subclasses: 1a (Samples 6, 9, 7, 5, 10, 12, 8, 2 and 4),
1b (Sample 3) and 1c (Sample 1). Subclass 1a of the blaCTX
genes have a high nucleotide identity with the reference
genes in E. coli and K. pneumoniae. However, the blaCTX
sample 1 gene behaves as an ancestral sequence of 1a,
blaSHV, blaTEM and some AmpC genes, and blaCTX
sample 3 is the ancestral sequence of blaSHV and blaTEM
genes. Similarly, the phylogenetic tree sub classified 7
AmpC genes into three subclasses: 2a (Sample 5), 2b
(Samples 1, 3 and 8), and 2c (Samples 9, 2 and 12). Subclass
2a is the ancestral sequence of the 1a group, while 2b is a
monophyletic group and is a paraphyletic group of 2a.
Finally, the blaTEM and blaSHV genes shape 3 and 4
subclasses, respectively. The phylogenetic analysis of the
four resistance genes is shown in Figure 1.

Second, the phylogenetic tree sub classified 8 16S rDNA
genes into three subclasses: 5a (Samples 7, 5, 8, 9, 2 and 4),
5b (Sample 3) and 5c (Sample 1). The subclass 5a sequences
have high nucleotide identity with the reference genes in E.
coli, 5b with P. aeruginosa and 5c with S. aureus (Figure 2).

Figure 1. Phylogenetic tree deduced from three ESBL-
producing gram-negative bacilli (blaCTX-M, blaTEM and
blaSHV) and AmpC genes from Boyacá’s Hospital,
Colombia by the neighbor-joining algorithm. Reference
sequences were chosen by BLAST algorithm based on the
homology of the sequencing results. Branch points
supported with bootstrap values ≥ 50% are indicated. The
scale below shows the substitutions per site. Subclasses of
ESBL (1 to CTMX, 3 to TEM and 4 to SHV genes) and
AmpC genes (subclasses 2) are indicate by colored boxes.

Figure 1

Phylogenetic tree deduced from three ESBL-producing
gram-negative bacilli (blaCTX-M, blaTEM and blaSHV)
and AmpC genes from Boyacá’s Hospital, Colombia by the
neighbor-joining algorithm. Reference sequences were
chosen by BLAST algorithm based on the homology of the
sequencing results. Branch points supported with bootstrap
values ≥ 50% are indicated. The scale below shows the
substitutions per site. Subclasses of ESBL (1 to CTMX, 3 to
TEM and 4 to SHV genes) and AmpC genes (subclasses 2)
are indicate by colored boxes.

Figure 2

Phylogenetic tree deduced from ESBLs-producing gram-
negative bacilli 16S rDNA gene sequences from Boyacá’s
Hospital, Colombia by the neighbor-joining algorithm.
Reference sequences were chosen by the BLAST algorithm
based on the homology of the sequencing results. Branch
points supported with bootstrap values ≥ 50% are indicated.
The scale below shows substitution per site. Subclasses of
16S rDNA gene (5a, 5b and 5c) are indicated by colored
boxes.
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DISCUSSION

ESBLs producing strains are considered a major problem
due to multidrug resistance, its implications in nosocomial
outbreaks, and their tendency to spread rapidly around the
world. Therefore, they are considered important clinical
markers; therefore, knowledge of their incidence and origin
plays an important role in selecting the appropriate
treatment. Epidemics caused by ESBL-producing bacteria
have been reported in most countries, while the prevalence
of ESBL-producing strains varies in different countries and
hospitals (10, 12). For example, the prevalence of ESBLs
producing Enterobacteriaceae was 0% to 25% in the U.S.
and 20% to 42% in Europe (CDC National Nosocomial
Infections Surveillance, http://www.cdc.gov/). In China, the
prevalence of ESBL production is high, ranging from 39.2%
to 60% (12, 32), 26.4% in Nigeria (33), 40% in Netherlands,
86.6% in India (34), and 40% in Pakistan (35).
Comparatively, those from Sweden (3%) were much less
than those from Greece, Turkey, and Portugal (>25%) (36,
37), and a similar comparison could be made for the 1% in
Japan (38) compared to South America (>30%) (39-41). A
similar study conducted in Colombia on isolates from
multiple sources showed higher rates of ESBLs—up to
16.7%—and revealed a few clonally related producers (19).
According to some authors, the absence of clonality in most
cases suggests that improved infection control will not be an
adequate control measure by itself and better antibiotic use
will also be required (18).

In this study, a total of 458 bacterial isolates from clinical
patients were investigated, of which only 140 were classified
as gram-negative. Additionally, the results show that the
prevalence of ESBLs producing gram-negative bacilli was
7.8% (11/140), which is lower than those reported in some
countries. The proportion of ESBLs positive cases was
highest, followed by AmpC-producing stains, and
carbapenemases-producing stains. Furthermore, this study
indicated that ESBLs positivity was closely related to the
resistance of most drugs. The present study suggests that the
resistance of ESBLs producing gram-negative bacilli is very
serious. ESBLs producing species identified in this study
were E.coli, K. pneumoniae and P.aeruginosa, which
occurred in 80.7%, 5% and 2.1% of cases, respectively. P.
aeruginosa has a natural resistance of type AmpC, which is
encoded in the chromosome of the bacteria. Additionally,
ESBLs encoded by plasmids, which presents two types of
beta-lactamases were observed in the amplifications. The
degree of resistance depends on the degree of repression of
Amp-C. ESBLs are primarily produced by the

Enterobacteriaceae family of gram-negative organisms, in
particular K.pneumoniae and E. coli (27, 37, 42). For
example, based on recent multi-continent surveys, Klebsiella
isolates from Latin America have the highest ESBLs
prevalence in the world (45.4–51.9%) (43, 44). The
prevalence among E. coli isolates, ranging from 8.5% to
18.1% in Latin American countries, was also higher than in
developed countries (45). However, over time, the incidence
of ESBLs producing bacteria has increased dramatically. In
a multicenter study conducted in eleven Latin American
countries, Mendes et al.(46) showed ESBLs rates that
exceeded 40% in Colombia, with 27% of the ESBLs in E.
coli and 44% in K. pneumoniae. Similarly, another study in
Colombia by Martinez et al (43) found an ESBLs rate of
43% for all the isolates studied, with 46% for K. pneumoniae
and E. coli in 20.5%. Furthermore, in this study, the service
most frequently corresponds to outpatient where a large
number of urine cultures with ESBLs phenotype isolates and
isolation were observed in the emergency services and
pediatric emergency, in which E. coli was most frequently
detected in these samples. The highest occurrence of E.coli
and K. pneumoniae producing ESBLs in this study was from
urine samples, 9 (81.8%), followed by other infections, and
2 (18.2%) were generated by P. aeruginosa. A much higher
prevalence rate of ESBLs producers from urinary isolates of
gram-negative bacilli have been previously reported in
different countries, such as India (58%) (11), Nigeria (37%)
(22), Peru (86,4%) (47) and Colombia (50%) (48). It has
been shown that urinary tract infections (UTI) are a major
cause of sepsis in the hospital setting and the second cause
of community healthcare consultation, constituting
approximately 40% of urology services (49).

The detection of genetic determinants associated with drug
resistance to gram-negative bacilli isolates is essential for
appropriate antimicrobial therapy and infection control.
ESBLs and AmpCs have been predominant beta-lactamases
that mediate gram-negative bacillus resistance to new broad-
spectrum beta-lactam antibiotics. ESBLs are mainly
mediated by plasmids, while AmpCs are mainly mediated by
the chromosome (50). ESBLs are Class A beta-lactamases
and may be defined as plasmid-mediated enzymes that
hydrolyze oxyimino-cephalosporins, and monobactams but
not cephamycins or carbapenems (8) and exist various
genotypes of ESBLs. Of these, the most common are the
SHV, TEM, and CTX-M types (51).

CTX-M types are the major phenotypes of domestic ESBLs,
which have been reported to be prevalent in the world (52),
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followed by the SHV type (53). In this study, among the
ESBL-producing E. coli, K. pneumoniae and P. aeruginosa
isolates, the majority of ESBLs genotypes were blaCTX-M,
9 isolates where the subtype of blaCTX-M-15 and 2 strains
were blaCTX-M-2. In the present study, only TEM-1 was
detected in a total of three isolates and SHV-1 was detected
in two isolates. Its rate was extremely low compared to that
reported by the previous studies. The enzyme was initially
designated CTX-M-1, thus creating the ‘cefotaximase
family’ (CTX-M family), which now comprises more than
60 enzymes (54, 55). The type of ESBLs expressed by this
microorganism has changed in recent years. These enzymes
are increasingly more prevalent than the classic TEM and
SHV-type ESBLs, because these genes have often been
substituted by members of the CTX-M family (9, 56). This
group of enzymes is prevalent and endemic in South
America (18, 57) and, similarly to this work, some other
studies in Argentina, Brazil and Bolivia have reported
blaCTX-M genes in a great variety of gram-negative species
(40, 57). In Colombia, the CTX-M enzymes, especially
Group 1, are being reported more frequently (58, 59), while
in studies in Brazil, CTX-M-2 predominates in K.
pneumoniae associated with outbreaks (60). Of increasing
importance is the potential effect of the presence of a CTX-
M-type ESBLs on the detection of ESBLs by the clinical
microbiology laboratory. Those laboratories, which rely on
the resistance to ceftazidime as a surrogate marker for
ESBLs production, will likely not be aware of organisms
producing CTX-M-type ESBLs (27). Additionally, within E.
coli, CTX-M-15 producing strains are commonly found and
frequently harbor multidrug resistance and virulence
determinants (61, 62). In accordance with some studies,
worldwide dissemination of blaCTX-M-15 is driven by B2
or D E. coli clones associated mainly with urinary tract
infections or IncFII plasmids containing multiple
antimicrobial drug–resistance platforms that contribute to the
spread of CTX-M-15 (16). Therefore, our data suggests that
the presence of blaCTX-15 in ESBL-producing bacteria is
independent of the presence of TEM or SHV genes and
could be responsible for this resistant phenotype.
Nevertheless, it was not possible to conclude if they were
responsible for the ESBLs phenotype or not, once non-
ESBLs encoding genes were associated with another gene
expressing the extended-spectrum phenotype (63).

Detection of AmpC beta-lactamases in E. coli and other
bacterial species poses a challenge to microbiological
laboratories. Furthermore, plasmid mediated AmpC beta-
lactamases represent a new threat, since these confer

resistance to cephamycins and are not affected by beta-
lactamase inhibitors, and can provide resistance to
carbapenems in strains that have lost outer membrane porins.
This resistance mechanism in E.coli and K. pneumoniae has
been found around the world to cause nosocomial outbreaks
(64, 65). In the present study, AmpC genes were detected in
seven isolates, with a high prevalence (63.6%). In previous
research, a high prevalence (35%) in E. coli and other
bacterial isolates of the AmpC phenotype in Switzerland
(66), India (77.5%) (67) and Colombia (48,6%) have been
detected (58). Additionally, we detected a PCR product of
170 bp, which was discarded by sequencing the AmpC gene.
This 170 bp product, which was previously reported as a
positive product of AmpC (58), is actually the
triosephosphate isomerase gene; therefore, the prevalence
presented by this work is higher than normal. Organisms
producing plasmid-mediated AmpC beta-lactamases
(PMABLs) such as E. coli and Klebsiella sp, are often
associated with multidrug resistance, leaving few therapeutic
options. In addition, the co-existence of ESBLs may mask
their detection phenotypically (67). There are no CLSI
guidelines available for its optimal detection and
confirmation. Therefore, phenotypic tests do not differentiate
between chromosomal AmpC genes and AmpC genes that
are carried on plasmids. Hence, genotypic characterization is
considered the gold standard (68).

Molecular phylogeny increasingly supports the
understanding of organismal relationships and provides the
basis for the classification of microorganisms according to
their natural affiliations. In most genes, our DNA sequence
phylogeny confirms the genus and species generated by the
phenotypic characterization of the strains studied. However,
the phylogeny observed in this study shows that samples 5
and 8 of AmpC, and sample 3 for the CTX-M genes could
be an ancestral sequence from E. coli and P. aeruginosa;
presenting a high rate of nucleotide substitution in DNA
sequence, without the known subtype. A possible
mechanism that could explain this fact is gene conversion in
bacteria. One of the strongest pieces of evidence for this
mechanism is the study of the pilis gene, which encodes the
pilus on Neisseria gonorrhoeae (N.gonorrhoeae) (69).
However, the CTX-M-type ESBLs gene may be transferred
by genetic mobile elements such as plasmids, transposons or
integrons (12), which could also explain this phenomenon.
Similarly, the phylogeny of the 16S rDNA gene confirms
most of the previously characterized species. Nevertheless,
sample 1 was phenotypically characterized as P. aeruginosa
but phylogenetically would come from Staphylococcus
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aureus. This result could be explained by the mechanism of
horizontal transfer between different species of bacteria by
similar processes to those discussed above in the CTX-M
gene. The transfers of DNA by transduction (via
bacteriophages) or by transformation (when DNA is released
from a bacterium and taken up by another) are not believed
to be relevant mechanisms of antibiotic resistance transfer
(70). By contrast, conjugation, i.e., direct cell-to-cell contact,
can potentially achieve horizontal gene transfer, as it has
been shown to be a mechanism with a broad host range (14).
For example, conjugation between two multiple antibiotic
resistant isolates, P. aeruginosa and E. coli, as the donors and
E. coli Rif(r) (sensitive to antibiotics) as the recipient has
been demonstrated through experiments (71). However, in
our case of the 16s rDNA phylogeny, the horizontal transfer
of genes between gram-negative and gram-positive bacteria
must be contemplated. This transfer is not uncommon, as
natural horizontal gene transfer from gram-positive to gram-
negative bacteria has been previously reported (15). Such an
event could explain the data observed in the phylogeny of
the resistance genes and the 16S rDNA for sample 1.
Therefore, comparative sequence analysis of ribosomal
RNAs or corresponding genes currently are the most widely
used approach for the reconstruction of microbial phylogeny
(72, 73), more so in regard to bacteria that have a great
impact on public health.

This study has revealed that ESBLs positive isolates from a
Hospital of Boyacá, Colombia, were resistant to the majority
of new broad-spectrum beta-lactam antibiotics, and some
strains also carry the AmpC gene, which together generated
a multidrug-resistant strain. Because our study reports a high
prevalence of AmpC genes in nosocomial infections,
dissemination of these organisms within the hospital or
between different regions of the country may become an
important public health issue. The molecular
characterization of resistance genes and confirmation by 16S
has become a fundamental tool in the study and treatment of
suspected nosocomial infections with ESBLs producing
bacteria worldwide.
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