Quick Review: Oxygen Transport

T Fujii, B Phillips

Citation

T Fujii, B Phillips. Quick Review: Oxygen Transport. The Internet Journal of Academic Physician Assistants. 2002 Volume 3 Number 1.

Abstract

This is a brief review on Oxygen Transport.
"The first concern in any life-threatening illness is to maintain an adequate supply of oxygen to sustain oxidative metabolism"

...Marino

OXYGEN TRANSPORT

The Oxygen Transport Variables:
Oxygen Content $\left[\mathrm{CaO}_{2}\right]$ Oxygen Delivery $\left[\mathrm{DO}_{2}\right]$ Oxygen
Consumption $\left[\mathrm{VO}_{2}\right]$ Extraction Ratio [ER]

OXYGEN CONTENT

The oxygen in the blood is either bound to hemoglobin or dissolved in plasma

The sum of these two fractions is called the Oxygen Content
$\mathrm{CaO}_{2}=$ the Content of Oxygen in Arterial Blood $\mathrm{Hb}=$ Hemoglobin (14 g/dl) SaO2 = Arterial Saturation (98\%) $\mathrm{PaO} 2=$ Arterial $\mathrm{PO} 2(100 \mathrm{mmHg})$

Figure 1
$\mathrm{CaO}_{2}=$

$$
\begin{aligned}
& \left(1.3 \times \mathrm{Hb} \times \mathrm{SaO}_{2}\right) \\
& \text { amount carried by } \mathrm{Hb}
\end{aligned}+
$$

$\left(0.003 \times \mathrm{PaO}_{2}\right)$
amount dissolved in plasma
$\mathrm{CaO}_{2}=(1.3 \times 14 \times 0.98)+(0.003 \times 100) \mathrm{CaO}_{2}=18.1 \mathrm{ml} / \mathrm{dl}$ $(\mathrm{ml} / \mathrm{dl}=\mathrm{vol} \% ; 18.1 \mathrm{vol} \%)$

* at 100% Saturation, 1 g of Hb binds 1.3 ml of Oxygen !
* at 100% Saturation, $0.003 \mathrm{ml} / \mathrm{mmHg}$ of Oxygen is

Dissolved in Plasma!
The PaO_{2} should be reserved for evaluating the efficiency of pulmonary gas exchange

Figure 6

Example \# 1: 35 yr old male s/p GSW to Chest
Pulse 126-BP $164 / 72-\mathrm{RR} 26 \mathrm{Hb}=12$ Hct = 36 ABG's: pH $7.38 / \mathrm{PaO}_{2} 100 / \mathrm{PaCO}_{2} 32 / 96 \%$ Sat

Question \# 1: What is this Patient's Oxygen Content?

OXYGEN DELIVERY

DO_{2} : the Rate of Oxygen Tranport in the Arterial Blood * it is the product of Cardiac Output \& Arterial Oxygen Content
$\mathrm{DO}_{2}=\mathrm{Q} \times \mathrm{CaO}_{2}$
Cardiac Ouput (Q) can be "indexed" to body surface area Normal C.I. : 2.5-3.5 L/min-m² By using a factor of 10 , we can convert vol \% to ml/s
$\mathrm{DO}_{2}=\mathrm{Q} \times \mathrm{CaO}_{2} \quad \mathrm{DO}_{2}=3 \times\left(1.3 \times \mathrm{Hb} \times \mathrm{SaO}_{2}\right) \times 10 \mathrm{DO}_{2}=3$ $\mathrm{x}(1.3 \times 14 \times .98) \times 10 \mathrm{DO}_{2}=540 \mathrm{ml} / \mathrm{min}-\mathrm{m}^{2}$

Normal Range: 520-720 ml/min- m^{2}

Figure 5

$\mathrm{O}_{2} \mathrm{ER}=\mathrm{VO} 2 / \mathrm{DO} 2 \times 100$
$\mathrm{O}_{2} \mathrm{ER}=130 / 540 \times 100$
$\mathrm{O}_{2} \mathrm{ER}=24 \%$

Normal Extraction 22-32 \%

Example \# 2: 35 yr old male s/p GSW to Chest
Pulse 126-BP 164 / 72 - RR 26
$\mathrm{Hb}=12 / \mathrm{Hct}=36$ ABG's: pH $7.38 / \mathrm{PaO}_{2} 100 / \mathrm{PaCO}_{2} 32 /$
96 \% Sat C.I. $=2.86$
Question \# 2: What is this Patient's Oxygen Delivery?

Oxygen Consumption

Oxygen uptake is the final step in the oxygen transport pathway and it represents the oxygen supply for tissue metabolism

The Fick Equation: Oxygen Uptake is the Product of Cardiac Ouput and the Arteriovenous Difference in Oxygen Content
$\mathrm{VO}_{2}=\mathrm{Q} \times\left[\left(\mathrm{CaO}_{2}-\mathrm{CvO}_{2}\right)\right]$
$\mathrm{VO}_{2}=\mathrm{Q} \times\left(\mathrm{CaO}_{2}-\mathrm{CvO}_{2}\right) \mathrm{VO}_{2}=\mathrm{Q} \times\left[(1.3 \times \mathrm{Hb}) \times\left(\mathrm{SaO}_{2}-\right.\right.$ $\left.\left.\mathrm{SvO}_{2}\right) \times 10\right] \mathrm{VO}_{2}=3 \times[(1.3 \times 14) \times(.98-.73) \times 10] \mathrm{VO}_{2}=$ $3 \times[46] \mathrm{VO}_{2}=138 \mathrm{ml} / \mathrm{min}-\mathrm{m}^{2}$

Normal VO2: 110-160 ml/min-m ${ }^{2}$

Figure 7

Example \# 3: 35 yr old male s/p GSW to Chest
Pulse 126 - BP $164 / 72-$ RR $26 \mathrm{Hb}=12 / \mathrm{Hct}=36$ ABG's: pH $7.38 / \mathrm{PaO}_{2} 100 / \mathrm{PaCO}_{2} 32 / 96 \%$ Sat C.I. $=2.86 \mathrm{SvO}_{2}$ 71%

Question \# 3: What is this Patient's Oxygen Consumption?

EXTRACTION RATIO

$E R=$ the fractional uptake of oxygen from the capillary bed $\mathrm{O}_{2} \mathrm{ER}$: derived as the Ratio of Oxygen Uptake to Oxygen Delivery

Figure 8

Content $\left[\mathrm{CaO}_{2}\right]$
 Delivery [DO_{2}]
 Consumption $\left[\mathrm{VO}_{2}\right.$]
 Extraction Ratio [ER]
 Mixed Venous PO_{2}
 Mixed Venous SO_{2}

Questions:
$\mathrm{ER}=18 \%$, what does this imply?
$\mathrm{ER}=40 \%$, what does this imply?
\{image:6\}
Example \# 4: 35 yr old male s / p GSW to Chest
Pulse 126 - BP $164 / 72-\mathrm{RR} 26 \mathrm{Hb}=12 / \mathrm{Hct}=36$ ABG's: pH $7.38 / \mathrm{PaO}_{2} 100 / \mathrm{PaCO}_{2} 32 / 96 \%$ Sat C.I. $=2.86 \mathrm{SvO}_{2}$ 71%

Question \# 4: What is this Patient's Extraction Ratio?
The uptake of oxygen from the microcirculation is a set point that is maintained by adjusting the Extraction Ratio to match changes in oxygen delivery

The ability to adjust O_{2} Extraction can be impaired in serious illness

The Normal Response to a Decrease in Blood Flow is an Increase in O_{2} Extraction sufficient enough to keep VO_{2} in the normal range
$\mathrm{VO}_{2}=\mathrm{Q} \times \mathrm{Hb} \times 13 \times(\mathrm{SaO} 2-\mathrm{SvO} 2) \mathrm{Q}=3 ; \mathrm{VO}_{2}=3 \times 14 \times$ $13 \times(.97-.73)=110 \mathrm{ml} / \mathrm{min}-\mathrm{m}^{2} \mathrm{Q}=1 ; \mathrm{VO}_{2}=1 \times 14 \times 13 \times$ $(.97-.37)=109 \mathrm{ml} / \mathrm{min}-\mathrm{m}^{2}$

THE DO-VO CURVE

\{image:7\}

MIXED VENOUS OXYGEN

By rearranging the Fick Equation, the determinants of Venous Oxygen are:
$\mathrm{VO} 2=\mathrm{Q} \times \mathrm{Hb} \times 13 \times\left(\mathrm{SaO}_{2}-\mathrm{SvO}_{2}\right)$
$\mathrm{SvO}_{2}=\mathrm{SaO}_{2}-\left(\mathrm{VO}_{2} / \mathrm{Q} \times \mathrm{Hb} \times 13\right)$

* the most prominent factor in determining SvO 2 is $\mathrm{VO}_{2} / \mathrm{Q}$

Causes of a Low SvO_{2} :
Hypoxemia
Increased Metabolic Rate
Low Cardiac Output

Anemia

ANOTHER POINT: OXIMETRY

Arterial Oxygen Saturation can be estimated but Venous Oxygen Saturation MUST be Measured !

* Remember the shape of the Oxyhemoglobin Curve * The SaO_{2} falls on the flat portion \& can be safely estimated, while the Venous \% Sat (68-77 \% falls on the Steep Portion and can vary significantly even with small errors in estimation!

In Critically-ill patients, augmenting the extraction ratio (in response to a change in oxygen delivery) may not be possible! In these patients, the Venous Oxygen Levels may change little in response to changes in Cardiac Output ! Thus, the Relationship between $\mathrm{CO}(\mathrm{Q})$ and Mixed Venous Oxygen must be determined before using SvO_{2} or PvO_{2} to monitor changes in DO_{2} or VO_{2}

The Transport Variables:
\{image: 8 \}
** $\mathrm{DO}_{2} \& \mathrm{VO}_{2}$ are indexed to body surface area
References

Author Information

Tisha K. Fujii, DO
Dept. of Trauma \& Critical Care, Boston University School of Medicine, Boston Medical Center

Bradley J. Phillips, MD

Dept. of Trauma \& Critical Care, Boston University School of Medicine, Boston Medical Center

