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Abstract

This paper reviews notable developments in theoretical epidemiology from the statistical perspective. [The article is draws
mainly from the author's experience of the evolution of epidemiologic methodology while working as a statistical researcher at
the Finnish Institute of Occupational Health (FIOH), 1972-2002.] It starts with introductory remarks on some basic methods in
epidemiologic data analysis, and proceeds emphasizing the importance of the Mantel-Haenszel era in epidemiology. Thereupon
the paper outlines a shift towards more modern epidemiologic study designs, and mentions likelihood-based methods useful for
epidemiologic regression analysis. This review further discusses multilevel modeling to allow for different levels of information to
be combined in a hierarchical regression analysis. Finally, this paper is concerned with the statistical 'frequentist' versus
Bayesian approaches to causal inference in epidemiologic research.

BASIC METHODS FOR EPIDEMIOLOGIC
RESEARCH

My first professional assignment at the FIOH was a
mortality study of workers in an anthophyllite asbestos
quarry and mine in Finland.1 In the data analysis, I used the

standardized mortality ratio (SMR) as a summary measure of
the fatalities. This statistic summarizes the observed survival
experience of a cohort relatively to that expected from the
vital statistics of a 'standard' population. The statistical
inference using the SMR is not based solely on empirical
observations. Rather, it is founded on the convolution of the
data and the underlying statistical model, which, by the
researcher's selection, is adopted to imitate the stochastic
process that generated the data. In the case of the SMR, a
viable model assumes that the observed number of deaths
follows a Poisson distribution with the force of mortality
(the intensity of risk of death) 2 as the single parameter of the

model. A test of the hypothesis that there is no excess
mortality can be derived as a score statistic from the
likelihood function 3 for the intensity of the Poisson

probability model. Likelihood-based intervals for the SMR
are obtainable as a function of the specified intensity, given
that the observed data are regarded as fixed.

Unfortunately, the simple analysis described above does not
extract fully the information contained in a study of the
mortality of the asbestos worker cohort. The cohort life-table

technique 2 offers a more advanced approach to the
description and analysis of the survival experience. This
method is a stochastic representation of the process, modeled
usefully as a Markov process, which produces the health
realizations with death as the final state. The life expectation
at a given age is an easily calculated measure that has a
direct probabilistic interpretation. This measure can be
communicated to the decision-makers of health policies, for
example, in terms of years of lives lost due to exposure to
asbestos, or, alternatively, the years of life gained by the
reduction of asbestos exposure following preventive
measures, and through legislation. The results of the analysis
can be depicted graphically by comparing the age-specific
survival trend of the exposed cohort and that of the general
population. One should keep in mind, however, the
flattening of the true effect resulting from the so-called
'healthy worker effect':4 the people who keep on working and

do not fall into the state of work disability are the surviving
fitter ones. We know today that this problem can be
analytically handled via the structured equations modeling
approach 5 that is rather ingenious, but difficult to grasp.

“Prevalence odds = Incidence Density Average Duration (of
illness)” is a basic intuitive demographic identity that is
taken to hold in stationary populations.6 The methodologic

folklore in epidemiology has contained inaccuracies of the
relation. Keiding 7 interpreted the term incidence as intensity

(hazard) and prevalence as probability, and provided a
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rigorous proof of the particular relation assuming that
average incidence is age independent. Alho 8 derived a more

general version of the relation that permits both incidence
and discounted disease duration to be age-dependent. The
treatment of the epidemiologic concepts in terms of
mathematical and probabilistic models has strengthened the
theoretical basis of the field.

DEVELOPMENTS DURING THE MANTEL-
HAENSZEL ERA IN EPIDEMIOLOGY

Cornfield 9 was the forerunner of modern epidemiology in

the application of biostatistics. His key contribution to the
development of the case-control study was to point out two
observations. First, the relative risk of developing the illness
in exposed persons as compared to non-exposed ones can be
approximated for illnesses with a low incidence, by the ratio
of the odds of having been exposed, contrasting the illness
cases to noncases. The second observation was that the
exposure-odds ratio (OR) can be estimated in a case-control
study. In order for the OR and other statistics estimated from

the data to be unbiased, Cornfield 9 assumed that the case
and control groups are representative samples from the case
and control study domains in the 'general' population. His
solution to the statistical problem of the interval estimation
of the OR arising from 'retrospective' studies was based on
the likelihood function of two independent binomials for the
cases and noncases.10 The same likelihood-based result was

derived independently by Fisher.11 This elegant one-page

paper, published 40 years after Fisher proposed the idea of
likelihood,12 exemplifies that a publication can be concise

when it is to the core of the problem.

In a landmark paper, Mantel and Haenszel 13 clarified the

relation between case-control (retrospective) and cohort
(prospective) studies by observing that the only conceptual
difference between these two approaches was that the former
involved sampling from the cohort rather than conducting a
census of its population.

For the analysis of epidemiologic data in the form of

multiple fourfold contingency tables, Mantel and Haenszel 13

derived a Chi-squared statistic with 1 degree of freedom by
using an argument that involved conditioning
(unnecessarily) by the marginal rates of the tables. Cochran

14 using an unconditional formulation earlier derived this

efficient test. The test is used in a stratified analysis to
control for the confounding bias by an extraneous
determinant of the disease outcome. Moreover, Mantel and

Haenszel 13 gave an estimator of the summary OR parameter

across the strata of the confounder. The estimator was useful
for epidemiologists, and it was being used for two different
types of data layouts: a small number of tables with large
frequencies, and a large number of tables with small
frequencies (e.g. matched series). However, it took 25 years
to develop a simple and robust formula for interval
estimation of the Mantel-Haenszel OR.15 There exists also a

summary risk ratio (RR) estimator of the common RR for
cohort studies that is completely analogous with the Mantel-
Haenszel OR estimator, and which is almost as efficient as
the corresponding iterative maximum likelihood estimator.16

The Mantel-Haenszel procedure is simple and free of
assumptions, and yields a consistent estimate that converges
in probability to the true risk parameter as the sample size

increases. The paper 13 had a huge impact, and is still widely
popular. From 1974 to 2002, it received over 5,700 citations,
and it continues to be cited at the rate of about 160 per year
(source: Institute for Scientific Information, Web of
Science).

A SHIFT TOWARDS MODERN EPIDEMIOLOGY

In the cohort sampling scheme, according to traditional
statistical theory,17 independent representative samples are

drawn from the exposed and non-exposed populations (in
statistical lingo: 'infinite super-populations'). As described
above, the classic case-control study inverted the cohort
design by drawing independent random samples from the
sub-populations of cases and noncases. In a remarkable

paper, Miettinen 6 demonstrated that the estimation of OR in
case-referent studies on incidence rates could be done
without any assumption about the 'rarity' of illness. For the
derivation, he abandoned the classic sampling model for
case-referent studies. Instead, a modern epidemiologist
designs the study base by choosing from the source
population the relevant experience that (s)he desires to
study. The study population is either a cohort (closed)
population or a dynamic one (open with population
turnover), and the researcher's task is to record the cases of
illness that arise in the base population and to draw a
reference sample of the study base.18 The cases and the

referents are then classified by the categories of the etiologic
determinant. The case series provides the numerators of the
compared rates, whereas the referent series provides the
denominators. Since then, this (case-base) design option in
epidemiologic research has become the model that underlies
many modern variants of the case-referent study. Examples
of designs with efficient sampling of the referents include a

nested case-referent design,19 a case-cohort design,18 20 two-
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stage sampling design,21 
, 22 and different case-pseudocontrol

sampling designs.23 Rothman 24 has concluded, “The

sophisticated use and understanding of case-control studies
is the most outstanding development of modern
epidemiology.” Breslow 25 gives a lucid review of the major

contributions of statistics in epidemiology, especially in the
context of the case-control study.

LIKELIHOOD-BASED INFERENCE ON
EPIDEMIOLOGIC PARAMETERS

Modern approaches to the analysis of epidemiologic data
originate from the development of likelihood inference

based on explicit probability models.12 Fisher 26 introduced

the likelihood inference for the OR parameter in a fourfold
table for which he assumed an extended hypergeometric
distribution. Likelihoods for the risk difference (RD) and RR
can be modeled in a similar manner.27 The extended

definitions of likelihood assume multiple formulations:
conditional-likelihood,28 29 partial-likelihood,30 marginal-

likelihood,28,31 quasi-likelihood,32 and, profile-

likelihood.27,,Appendix C

In the early 1980s, Prof. Olli S. Miettinen, among others,
developed statistical methodology for epidemiology. His
work culminated in the publication of the textbook
Theoretical Epidemiology.33 In this book, he considers the

comparative analysis of epidemiologic rates, in terms of the
RD, RR, and OR parameters, both for stratified data and
under a regression model. The likelihood-based inference on
the comparative parameters provided a unified approach for
significance testing and parameter estimation. The relative
theoretical merits of the Fieller-type,34 likelihood score and

likelihood ratio statistics were examined.35 
, 36. Simulation

studies 38 
, 39 

, 40 
, 41 

, 42 have evidenced that the proposed

(asymmetric) interval estimation method with a constrained
maximum likelihood estimate of the variance performs
better than the usual asymptotic intervals in small samples in
terms of the actual confidence level.

APPROACHES TO EPIDEMIOLOGIC
REGRESSION ANALYSIS

Regression analysis encompasses a vast array of

techniques.43 
, 44 A large variety of extensions to the linear

regression model are available today for epidemiologists. In
what follows only the basic methods used for modeling in
epidemiology will be mentioned.

A logistic regression model can be applied to investigate the
simultaneous effects of variables on disease risk. The

response can be binary or ordinal-scaled. Several exposure
variables, effect-modifiers and confounding factors may be
accommodated. The methodology was developed in the
1960s for the needs of large cohort studies on cardiovascular
disease, particularly the Framingham study in the USA.
Statistically, the methods were derived using the
discriminant function 45 and maximum likelihood 46

approaches. The logistic method has been applied in many
other fields. In the occupational health field, Alho 47

developed a conditional logistic estimation procedure to
solve a dual registration problem of the occupational disease
registry at the FIOH.

The logistic model can be used to analyze case-referent data
even if no external information is available to allow
estimation of risks in the source population. Prentice 48 used

Cornfield's 10 classic sampling model when he presented a
binary logistic regression for case-referent data. The
outcome parameter was the probability of having been
exposed to a risk factor, and the illness status was entered as
an explanatory variable in the regression equation. Although
the causal relation was inverted in this model, it allowed the
estimation of the OR as an exponential function of the model
coefficients.

Epidemiologists have somewhat neglected the sensitivity of
the maximum likelihood parameter estimates to model
misspecification. If one posits a logistic model for the
disease rates in the population that depends linearly on the
determinants, but the true model form is quadratic, the
regression coefficients estimated from the case-referent
sample may differ markedly from the coefficients that one
would estimate from a cohort study of the same population.49

For small or unbalanced data sets, and for highly stratified
data, the asymptotic maximum likelihood methods are
unreliable for parameter estimation. In these situations, the
software package LogXact 50 can be used to compute exact

logistic regression.

Cox's 51 regression model, or the proportional hazards model,

is based on the notion of partial likelihood,30 and it is
applicable to the analysis of survival data or event history
data.52 The model is semi-parametric in that the hazard or

momentary risk depends on time non-parametrically but the
risk ratio is a parametric function of the covariates. Due to
computational difficulties, the method was seldom used in
the 1970s, but today it is applied generally. In Finland,

Hakulinen 53 
, 54 has developed analytic methods and

computing procedures of survival analysis for studies on
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cancer epidemiology.

The log-linear (or exponential) risk model 56 is a most

effective approach for the analysis of count (or aggregate)
data, and especially for studying interdependencies. For
example, the model was fitted to the 15-year follow-up data
of a cohort of Finnish workers exposed to carbon disulfide.58

This intervention study was designed and conducted by

Hernberg.56 For the analysis, the follow-up period was
divided into five subperiods in which the deaths from
ischemic heart disease were assumed to occur according to
time-homogeneous Poisson processes. A piece-wise
exponential model was fitted to the data; it indicated that the
declining trend in mortality reflected the reduced levels of

carbon disulfide exposure.58

Modern ('smooth') regression methods,59 such as additive

models and scatterplot smoothers as well as projection
pursuit regression, are powerful tools, for example, to detect
nonlinearities in the data. However, they are computer-
intensive, and the distribution theory does not give them
much support. One should be cautious in applying these new
methods, because it is very easy to over-fit models and over-
interpret features of the data.

MULTILEVEL MODELING AND HIERARCHICAL
REGRESSION

Many statistical problems involve multiple parameters.
There is need to reflect on the complexity of observed data
and different patterns of heterogeneity, dependence,
mismeasurement, etc. In epidemiology, multiple parameters
are involved in analyses of: 'subject effect' in growth curves;
'frailty' in correlated or familial survival data; 'center effect'
in multi-center studies; risk ratios for a disease outcome in
different areas or time periods; and risks ratios for different
tumor sites in toxicological studies. In occupational and
clinical epidemiology, the analysis of longitudinal data or
repeated measurements 60 involves multiparametric

modeling. Environmental epidemiology uses methods such
as ecologic analysis, time-series analysis, and quantitative
risk assessment, for linking data on the environment and
health.61 The relations are often complex and fraught with

uncertainties. When a model has many parameters, we may
consider them as a sample from some distribution. In this
way, we model the parameters with another set of ('hyper'-)
parameters and build a model with different levels of
hierarchy.

Greenland 62 argues that regression models with random

coefficients offer a more scientifically defensible framework

for epidemiologic analysis than the fixed-effects models now
prevalent in epidemiology. The data often consist of multiple
levels that have effects on the results. For example, in the
study of disease outcomes, there are patients involved (level
1) who are treated by physicians (level 2) who, in turn, are
working in different hospitals (level 3). The characteristics
of each may influence health outcomes, such as the patient's
level of education, the physician's practice style, and the
hospital's level of technical equipment. Sometimes
characteristics from different levels influence each other to
produce a certain outcome.

Conventional statistical methods assume that the
observations are independent of each other. In a hierarchy,
the observations of the same subpopulation are usually alike
in some respects, that is, the data are correlated. The so-
called multilevel models or hierarchical regressions offer a
more realistic and flexible description of the factors that
create uncertainty than do fixed-effects models. An
advantage of regression with random coefficients is that it
can be used to solve the often-encountered problem of
under-identification of causal effects in epidemiologic data.
The approach is to stochastically constrain the analysis by
imposing a distribution on some parameters. The analysis of
the data can be done on an individual level or on a higher
aggregate level, depending on the objective of the study.
Theoretically, multilevel modeling is well suited to
analyzing the influence of macrolevel contexts on microlevel
behavior. Statistically, hierarchical analysis solves the
problems that occur when we either aggregate the data to
one, higher level (loss of information) or disaggregate the
data to the lower level (overestimated precision).

Multilevel modeling increases greatly the statistical
precision and robustness of data analysis. A hierarchical
regression is modeled in two stages. First, an ordinary (e.g.
logistic) regression model is written for the effects of fixed
parameters. In the second stage, a random distribution is
defined for some of the parameters of the first-stage model,
for example, to describe the presence of error in exposure
measurement. By combining the stage 1 and stage 2 models
one gets a mixed model with coefficients both for fixed-
effects and for random-effects.

Multilevel models can also be estimated using a Bayesian
analysis.63 The Bayesian approach provides a natural

framework to handle models of almost arbitrary complexity.
There are many applied situations in which multilevel
models and Bayesian estimation methods allow better
analyses than more traditional methods. In a way, the
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hierarchical approach unifies the traditional and Bayesian
methods.64

STATISTICAL INFERENCE IN EPIDEMIOLOGIC
RESEARCH

Conventional ('frequentist') statisticians think of
probabilities as frequencies observed in the long run of
repeated experiments. Epidemiologic studies generally
concentrate on nonexperimental research into causality in
the health field. In these types of studies, there is little or no
need for random sampling in the selection of the study base.
However, randomization is needed for causal inferences
from conventional statistics, for example, in the study of
intended effects of medical intervention in clinical trials.65 In

the context of nonrandomized studies, Greenland 66 has

questioned the interpretation of probabilistic measures such
as a p-value 67 and a confidence interval as summaries of the

variability of the results stemming from unidentified
confounders.68 An unknown distribution of confounders

cannot safely be assumed to be equivalent to what
randomization would produce. According to this view, these
statistics are merely rough descriptors of data variability.
Causal inference should concern: (i) the search for
explanations for patterns recognized in the data by statistical
methods and (ii) criticism of the proposed theories about the
physical mechanisms that generated the data.69

There are many alternative methods available for the
description of variation in the data. In sensitivity analysis,
the data can be modeled, for example, by leaving out some
observations from the analysis and observing how much the
results would change. In influence analysis, the model can
be altered systematically to see whether the results are prone
to change or whether they remain fairly similar. The
uncertainty in the model specification can be reduced by the
use of robust procedures. In random-effects modeling, one
can enter variables into the model to stochastically limit, for
example, the effects of measurement error. Semiparametric
methods such as the generalized additive model 70 allow

epidemiologists to visualize their data in novel ways,
especially in the presence of nonlinear associations, leading
to new insight and new hypotheses.

In Bayesian statistics, probability is used as a fundamental
measure of uncertainty. Probabilities are interpreted as
subjective beliefs, which are modified (according to the
Bayes rule) as new information accumulates. Technically,
prior information is convoluted with the data at hand, and
the result is presented in the form of a posterior distribution.

Epidemiologists, who felt that the specification of the prior
distribution was difficult, previously seldom used Bayesian
methods. Even today few epidemiologists apply Bayesian
methods. The finding of Bayesian solutions presents a
challenge even in the case of simple problems. The exact
Bayesian analysis of the comparative epidemiologic
parameters RD, RR, and OR in a two-by-two table furnishes
an example.71

The empirical Bayesian analysis is an alternative approach in
which a prior distribution is most easily specified to be
reciprocally related to the distribution of the data, and the
parameters of the conjugate distribution are estimated from
the data. The Bayesian framework offers a possibility for the
hierarchical modeling of case-referent studies that can be
extended to deal with any number of categorical or
discretized continuous exposure variables, and to identify
suitable prior distributions.72 One can also perform a semi-

Bayesian analysis by specifying some features of the prior
distribution from existing knowledge and estimating given
parameters from the data. In an epidemiologic application,
for example, one can insert background information on
relative risks into conjugate prior distributions.73

In a Bayesian analysis, to produce exact results from the
posterior distribution, it is often necessary to evaluate
integrals over large-dimensional parameter spaces, and this
can be computationally intractable. However, new computer
programs such as AD Model Builder 74 provides feasible

approximations to these integrals in the form of a profile
likelihood. The profile likelihood can then be used to
estimate extreme values such as the tails of Bayesian
credible intervals. The program also supports the Markov
Chain Monte Carlo (MCMC) simulation for an 'exact'
Bayesian analysis. The development of powerful MCMC
methods has meant that computational issues are no longer a
major obstacle to Bayesian inference. But model
convergence must nevertheless be checked carefully, for
example, when using the BUGS (Bayesian Inference Using
Gibbs Sampling) program
(fttp://www.mrc-bsu.cam.ac.uk/bugs).

Epidemiology has its limitations because there is not enough
variation, for example, in many life-style factors within the
studied population to observe RRs of sufficient magnitude to
overcome the measurement error and confounding bias.75

Effective solutions may be seen in randomized intervention
programs, but these can be prohibitively costly and difficult
to design in nonexperimental settings. In purely
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observational studies one can make better inferences by
thinking about the causal relations among variables and by
integrating causal structures into the data analysis. For
example, if one wants to estimate the probability of
causation for individuals in cases of liability, it is important
to explicitly specify the underlying biologic model that has
been assumed.76 Such methods include instrumental variable

analysis used in econometrics.77 Rubin's 78 causal model,

Robin's 5 G-computation algorithm for longitudinal data, and
Pearl's procedures for causal reasoning based on directed,
acyclic graphs.79 80

FUTURE CHALLENGES OF BIOSTATISTICS IN
EPIDEMIOLOGY

Biostatisticians have contributed for a long time to the
conceptualization, development, and successful usage of
epidemiologic methods for the study of disease causation
and prevention. The International Biometric Society was
established already in 1947.81 The Finnish Biostatistical

Society was founded 40 years later in 1987. The activity of
the Biostatistical Society has fostered the application of
statistical and mathematical methods in epidemiology,
medicine and biology in Finland. Especially the work carried
out at the Research Division of Biometry at the Rolf
Nevanlinna Institute for Mathematics of the University of
Helsinki under the leadership of Professor Elja Arjas in the
application of the Bayesian statistical inference and MCMC
methods 82 deserves mentioning.

An extensive coverage of the statistical aspects of most areas
of established epidemiologic methods, including more recent
developments, is contained in the Encyclopedia of
Epidemiologic Methods.83 There are, nevertheless, two

current sources of concern.84 The first is the apparently

irreversible over-mathematization of biostatistics. This trend
is reflected in journals such as Biometrika and Biometrics
that initially set out to be comprehensible to the less
academic practitioners. Newer journals such as Statistics in
Medicine and Biostatistics are more application-oriented.
The second concern is that the evolution of biostatistics,
which relies increasingly on important contributions from
computing, can lead to the over-emphasis of the role of
theory at the expense of practice in the teaching of
epidemiologic methods for researchers. Although theory
may be the best guide in practice, the stress in the
application of biostatistics should be on the prefix bio.
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