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Abstract

Myocardial Preconditioning is the exposure of myocardial tissue to brief, repeated periods of vascular occlusion in order to
render the myocardium resistant to the deleterious effects of prolonged episodes of ischemia or reperfusion. The period of pre-
exposure and the number of times the tissue is exposed to ischemia and reperfusion vary, the average being 3 to 5 minutes.
Ischemic preconditioning was first described more than a decade ago by Murray et al (1). They demonstrated a 75% reduction
in infarct size caused by a 40 min coronary artery occlusion, when the occlusion was preceded by four episodes of 5 min
ischemia and 5 min of reperfusion. This phenomenon has been described extensively not only in experimental animals but also
in humans and has been responsible for an enormous amount of research over the last 15 years.

INTRODUCTION TO MYOCARDIAL
PRECONDITIONING

Myocardial Preconditioning is the exposure of myocardial
tissue to brief, repeated periods of vascular occlusion in
order to render the myocardium resistant to the deleterious
effects of prolonged episodes of ischemia or reperfusion.
The period of pre-exposure and the number of times the
tissue is exposed to ischemia and reperfusion vary, the
average being 3 to 5 minutes. Ischemic preconditioning was
first described more than a decade ago by Murray et al (1).

They demonstrated a 75% reduction in infarct size caused by
a 40 min coronary artery occlusion, when the occlusion was
preceded by four episodes of 5 min ischemia and 5 min of
reperfusion. This phenomenon has been described
extensively not only in experimental animals but also in
humans and has been responsible for an enormous amount of
research over the last 15 years. Ischemic preconditioning not
only reduces the size of infarct but also protects the heart
against post-infarction left ventricular dysfunction (2,3,4) and

ventricular arrhythmias (5,6).

MECHANISMS UNDERLYING ISCHEMIC
PRECONDITIONING

Both an early and a late phase of preconditioning have been
described. Ischemic preconditioning is associated with two
forms of protection: a classical form or first window of
protection lasting approximately 2-3 h after the
preconditioning ischemia followed a day later by a second

window of protection (SWOP) lasting approximately 3 days.
The mechanism of ischemic preconditioning involves both
triggers and mediators and involves complex second
messenger pathways that appear to involve such components
as adenosine (7,8), adenosine receptors (9,10,11), nitric oxide

(NO) (12,13,14), heat shock proteins (HSP) (15,16,17), the epsilon

isoform of protein kinase C (PKC) (18,19,20), mitogen-

activated protein kinases (MAPK) (21,22,23), the mitochondrial

ATP-dependent potassium (K+(ATP)) channels (24,25,26), as

well as others, including a paradoxical protective role of
oxygen free radicals (27,28).

It is believed that ischemia induced release of endogenous
agents such as adenosine and nitric oxide (NO), activation of
adenosine receptors, protein kinase C (PKC), mitogen-
activated protein kinases (MAPK) and opening of ATP-
sensitive mitochondrial potassium (K+(ATP)) channels are
the potential mechanisms of this preconditioning
phenomenon.

An increase in the release of endogenous agents such as
nitric oxide (NO) and adenosine may be responsible for both
windows of protection, probably via different mechanisms.
Nitric oxide acts as a trigger in the first window of
protection via activation of a constitutive Nitric Oxide
Synthase (NOS) isoform and cGMP pathway (29). Nitric

oxide is also involved in the second window of protection
(SWOP), however, via a different mechanism, through the
activation of a protein kinase C (PKC), which in turn
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activates ATP sensitive potassium (K+(ATP)) channels
(29,30,31). In the second window of protection (SWOP), the

origin of nitric oxide is attributed to the activity of an
endothelial Nitric Oxide Synthase (eNOS) (13,14). Adenosine-

induced preconditioning involves p38 MAP kinase, and
mitochondrial K+(ATP) channels (7,32). Recently, it has been

suggested that the K+ (ATP) channels involved in the
protection are mitochondrial rather than sarcolemmal (24,26).

Reactive Oxygen Species (ROS) can trigger preconditioning
by causing activation of the mitochondrial K+(ATP)
channel, which then induces generation of ROS and NO,
which are essential for preconditioning protection (31).

Activated PKC, by phosphorylation, stabilizes the open state
of the mitochondrial K+(ATP) channel, which is believed to
be the main end-effector in ischemic preconditioning. The
opening of K+(ATP) channels ultimately confers
cytoprotection by decreasing cytosolic and mitochondrial Ca
(2+) overload (50,51). The stress inducible HSP70.1 and 70.3

mediate second window of protection (SWOP) (15,16), but the

exact signaling pathway of this response is still under
investigation.

ANESTHETICS AND MYOCARDIAL
PRECONDITIONING

Perioperative ischemia is common in patients at risk of or
with known coronary artery disease undergoing noncardiac
or cardiac surgery. The resultant ischemic injury that occurs
during surgery can result in a significant morbidity and
mortality. Some of the consequences of ischemic injury that
occurs during surgery include a delay in extubation and
hospital discharge, impaired quality of life after surgery, and
a disproportionate consumption of health resources. The goal
of anesthesiologists is to prevent this poor perioperative
morbidity and mortality, which has led to a significant
research in the field of anesthetic preconditioning.
Experimental as well as clinical studies have shown that in
addition to brief ischemia and pharmacological agents,
volatile anesthetics used perioperatively also precondition
the myocardium (33). Halothane (34,35), Desflurane (35),

Isoflurane (34,35.36,37,38,39), and sevoflurane (35,40) have been

extensively studied and these studies reveal promising
results with potential clinical implications.

MECHANISMS UNDERLYING ANESTHETIC
PRECONDITIONING

Anesthetic preconditioning and ischemic preconditioning
have many fundamental steps in common, including
formation of nitric oxide, protein kinase C (PKC), free

radicals, activation of adenosine receptors and ATP-sensitive
potassium (K+(ATP)) channels. It is believed that many
anesthetics and a significant number of perioperatively
administered drugs ultimately affect the activity of cardiac
sarcolemmal and mitochondrial K+(ATP) channels, which
are the end-effectors of cardiac preconditioning. Volatile
anesthetics reduce the ischemia induced cell damage, infarct
development and infarct size by causing activation of the
sarcolemmal and mitochondrial K+(ATP) channels
(39,41,42,43,44), by stimulation of adenosine receptors (45) and

subsequent activation of protein kinase C (PKC) (46,47) and

by increased formation of nitric oxide (48) and free oxygen

radicals (47,49). Activated PKC then amplifies the

preconditioning stimulus and by phosphorylation, stabilizes
the open state of the mitochondrial K+(ATP) channel (which
is believed to be the main end-effector in anesthetic
preconditioning) and the sarcolemmal K+(ATP) channel.
The opening of K+(ATP) channels ultimately confers
cytoprotection by decreasing cytosolic and mitochondrial Ca
(2+) overload (50,51).
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