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Abstract

Purpose:  To prospectively evaluate peak airway pressure (PaW) intrinsic PEEP (PEEPi), extrinsic PEEP (PEEPe) and peak
expiratory flow rate (PEFR) with changing inspiratory flow waveforms during mechanical ventilation in patients.

Material And Methods: Ten critically ill mechanically ventilated patients on controlled mechanical ventilation (CMV) with acute
respiratory failure admitted to the intensive care unit were evaluated to assess the effects of decelerating, square and sine
waveforms on). PaW, PEEPi, PEEPe, PEFR

Results: PaW was lower with the decelerating waveform compared to square and sine There was no statistical difference in
PEEPi, PEEPe or PEFR with varying inspiratory flow waveforms..

Conclusions: Adjustment of inspiratory flow waveforms does not affect PEEPi. A lower PaW coupled with a stable PEEPi makes
the decelerating waveform preferred for mechanically ventilated critically ill patients on CMV.

INTRODUCTION

Clinicians have become increasingly aware of the
importance of delivering effective mechanical ventilation
while trying to avoid injury associated with different modes.
Research has examined untoward effects of certain variables
of mechanical ventilation including tidal volume (Vt),
intrinsic and extrinsic positive end expiratory pressure
(PEEPi and PEEPe) and respiratory rate (RR) (1,2,3,4,5,6). Air

trapping and breath stacking often cause development of an
increased PEEPi, adverse effects include: altered mechanical
ventilation measured variables, hemodynamic compromise,
misreading of central venous and pulmonary artery catheter
pressure measurements. Other effects are erroneous
calculations of static respiratory compliance and increases in
work of breathing, which could delay weaning from the
ventilator. (7,8,9,10,11,12,13,14) Less obviously, the effect of

pressure variation of the inspiratory waveform has been
implicated in shear stress damage at the alveolar and lung
parenchymal level possibly resulting in a cytokine cascade
capable of damaging other organ systems.

Modeling of the lung as a simple electrical capacitance to
simulate lung compliance and an electrical resistance as an
analog for airway resistance (15) (Fig1) indicates that, at

lower respiratory frequencies, levels of PEEPi sould be
independent of the applied inspiratory waveform. The
integrating properties of the compliance and resistance
should, theoretically, achieve the same peak inspiratory
pressure and PEEPi as long as Vt is the same, and expiratory
time is sufficient to prevent breath trapping. This might
suggests that the inspiratory waveform should confer no
therapeutic advantage with respect to PaW and PEEPi.
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Figure 1

Figure 1: A simple electrical analog model of the lung and
airways composed of fixed a fixed airway resistance and
lung compliance independent of the applied waveform (the
mean airway pressure should be the same).

Figure 2

Figure 2: Airway resistance may be flow sensitive and
exhibit dynamic characteristics that are flow dependent. This
could explain why the decelerating flow waveform might
generate less harmful effect within the lung.

Studies on varying inspiratory waveform patterns in
mechanically ventilated patients and their effect on gas
exchange, respiratory mechanics and hemodynamic
parameters, however, have been scarce and largely
inconclusive. Different waveforms might have deleterious
effects on respiratory mechanics by altering other respiratory
parameters such as PaW, PEEPi, PEEPe and peak expiratory
flow rate (PEFR).

This study seeks to evaluate the effects of three different
inspiratory flow waveforms on PaW, PEEPi, PEEPe and
PEFR in critically ill mechanically ventilated patients with
acute respiratory failure on controlled mechanical ventilation
(CMV) and to assess the adequacy of the electrical lung
model in this type of application.

MATERIALS AND METHODS

Ten mechanically ventilated patients with acute respiratory
failure admitted to the intensive care unit (ICU) of a teaching
hospital were evaluated and selected to enter this
observational study. The Critical Care and Anesthesia
Research Committee conferred approval to evaluate
accepted techniques of mechanical ventilation support. This
study did not require randomization. All patients were
orotracheally intubated with Sheridan low-pressure cuffed
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endotracheal tubes varying in internal diameters from 7 to 9
mm. An esophageal balloon was positioned in the lower
third of the patient's esophagus (35 to 40 cm mark from the
nose) and connected to a Bicore CP-100 Pulmonary Monitor
(Allied Healthcare Products, Irving, CA). Chest radiographs
and negative esophageal pressure deflection during
inspiration determined adequacy of placement. All patients
were afebrile, spontaneously breathing and connected to a
Puritan Bennett 7200AE (Pleasanton, CA) with the
following settings: volume-cycled ventilator in the
controlled mechanical ventilation mode of operation, tidal
volume of 6 ± 1 mL/kg, a respiratory rate of 10
breaths/minute, FiO2 of 0.40 and PEEP of 10 cm H2O or
less. Pressure sensitivity trigger was reduced to 2 cm H2O.
All patients were mechanically ventilated for less than one
week at initiation of the study. All parameters were recorded
by the Bicore Pulmonary Monitor. The parameters measured
were: minute ventilation (Ve), respiratory rate RR (breaths/
minute), PEEPi, PEEPe, PEFR, mean airway pressure
(PaW), change in airway pressure (dpaW).

The patients were randomly placed on each flow pattern for
an equilibration time of 5 minutes, then data were collected
on each waveform for 2 minutes, downloaded for analysis by
the Bicore CP-100 conversion program and loaded to an
IBM-PC (CP-100 CVT1.2, Bicore Monitor System). This
program converts a binary data file produced by the CP-100
monitor-logging program to an ASCII format parameter file
for use with any spreadsheet program. For every patient a
mean and standard deviation for every variable was
calculated. The initial peak flow was adjusted to attain a
constant mean airway pressure (MAP) for the three different
waveforms. The inspiratory/expiratory ratio was maintained
in a range of 1:2-1:3.

Patients excluded from this study were those with previous
esophageal surgery, known abnormal esophageal anatomy
and any contraindication to placement of a naso-gastric tube.
Data are presented as mean ± standard deviation (SD).
Statistical analysis was performed using analysis of variance
(ANOVA) and a nonparametric Wilcoxon test (Kruskal-

Wallis χ2-test) with a general regression linear model. A
value of p ≤ 0.1 was considered statistically significant.

RESULTS

Ten critically ill mechanically ventilated patients with acute
respiratory failure were evaluated. Their mean age was 61 ±
12 years (range 35 to 77 years). The causes of respiratory
insufficiency were complications of thoracic surgery in five

cases, gastric resection in one case, genitourinary surgery in
one case and one a complication of breast surgery. All ten
patients remained hemodynamically stable during the trial
period. Respiratory variables of each patient measured on
three different inspiratory flow waveform patterns were
compared. Variables are shown in Table 1.

Figure 3

Table 1: Mean and SD of respiratory variables with varying
inspiratory flow waveforms.

PaW and dpaW were lower with decelerating waveform
(p<0.05).There was no statistically significant change in
PEEPi, PEEPe or PEFR with variation in inspiratory flow
waveform. Ve and RR were equal in all the experiments
(volume-controlled ventilation). There were no statistically
significant differences between the square and sine
waveforms in other pulmonary mechanics parameters.

DISCUSSION

All three inspiratory waveforms applied to assist patients
with respiratory failure did not increase PEEPi. No
significant differences were noted in PEFR among the three
waveforms. Some studies in the past have suggested that
there are no significant differences in efficacy of gas
exchange (16,17,18,19,20,21) or hemodynamics (18,19,20,21,22,23)

among different waveforms. Other studies have
demonstrated improved cardio-respiratory function,
including improved gas exchange and respiratory mechanics,
with the decelerating inspiratory flow waveform ventilation
in normal and diseased lungs compared with the accelerating
or constant waveforms (16,19,21,22,23,24,25,26). In theory, the sine

waveform is the most physiologic in terms of efficiency and
energy expenditure in healthy lungs. The decelerating
waveform, however, seems to be advantageous with
increasing respiratory requirements because the respiratory
compliance is improved. A clinical study demonstrated that
the use of the decelerating waveform may have beneficial
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clinical implications in critically ill mechanically ventilated
patients with acute respiratory failure because it improved
pulmonary mechanics (16). We previously described that the

peak airway pressures were significantly lower using the
decelerating inspiratory flow waveform and that dynamic
compliance improved compared with the other waveforms
(7).

The difficulty in measuring airway pressure should not be
underestimated. Direct alveolar pressure measurement under
flow conditions is technically challenging and impractical in
the clinical setting. Furthermore the readouts provided by
mechanical ventilators can at times be confusing due to
interchangeable terms used. These measurements represent
pressures measured at the proximal end of the endotracheal
tube and can be misleading if interpreted as alveolar
pressure. The dynamics of gas flow though the airways
manifest non-intuitive pressure effects at the alveolar level.
Significant to our study was the method used to measure the
various airway pressures encountered. The Bicore device
measures airway pressures by the use of an esophageal
balloon positioned within the thoracic cavity and better
represents intra pleural and airway pressures at the alveolar
level. These pressures are, furthermore, measured
dynamically as opposed to some methods that require special
airway maneuvers to elude these values (30). Consequently,

PaW, and PEEPi can be more accurately observed while
varying the inspiratory waveform parameters. A randomized
and comparative trial of fifty-four patients with COPD was
performed applying constant, decelerating, and sine
waveforms in a random order. The decelerating waveform
produced statistically significant reductions of peak
inspiratory pressure, mean airway resistance, physiologic
dead space ventilation (31). There was also a significant

increase in alveolar-arterial oxygen pressure difference with
the decelerating flow waveform, but there were no
significant changes in pulmonary variables and other
hemodynamic measurements. The most favorable flow
pattern for ventilated patients with COPD appeared to be the
decelerating waveform. In an additional study on ten chronic
obstructive pulmonary disease patients receiving
mechanically ventilation for acute respiratory failure
ventilated with a constant or a decelerating inflation flow
profile; tidal volume and respiratory frequency were similar
during the experimental conditions. The authors concluded
that the inspiratory waveform profile had no significant
cardiorespiratory effect in intubated COPD patients
mechanically ventilated for acute respiratory failure. (32)

Patients with obstructive lung disease are particularly prone
to developing PEEPi and therefore have difficulty triggering
the ventilator. At constant PEEPi, the decelerating and the
two other waveforms did not impair alveolar recruitment. In
a study by Nilsestuen, et al, respiratory rate and tidal volume
were fairly similar and constant throughout the study. The
authors concluded that bedside evaluation for the presence of
PEEPi should be routinely performed and corrective
adjustments made when appropriate (33)

A protective ventilatory strategy that uses a low-tidal volume
and repetitive alveolar recruitment-derecruitment decreased
pulmonary and systemic cytokines and, more importantly,
decreases mortality (2,29). At the same time, lower tidal

volume ventilation is one of the strategies that might
increase PEEPi in mechanically ventilated patients (30). A

study conducted by de Durante and coworkers demonstrated
that the ventilatory settings employed in the ARDSNet low
Vt group may generate an auto-PEEP of 5.8 ± 3 cmH2O.

These findings suggest that patients with ARDS, ventilated
at relatively high respiratory rates develop greater PEEPi

than when ventilated at lower rates, even for the same
minute ventilation. This mechanism may produce decreased
lung injury secondary to recruitment–derecruitment, and
hence provides a plausible explanation for some of the
decreased mortality observed in the ARDSNet trial in the 6
ml/kg group (34). Vieillard Baron and coworkers investigated

the effects of increasing respiratory rate from 15 to 30
breaths/min, while maintaining a constant plateau pressure.
Those authors reported a PEEPi of 6.4 ± 2.7 cmH2O at 30

breaths/min, which was associated with an increased right
ventricular outflow impedance and a decreased cardiac
index. The authors concluded that, in acute lung injury
ARDS patients, the use of higher respiratory rate at constant
plateau pressure in order to increase minute ventilation is
unable to improve elimination of carbon dioxide, while it
generates auto-PEEP (35). It is possible to speculate that the

observed difference in survival could be related to the
difference in total PEEP. (36) The ARDSNet findings

pertains to the possible role of PEEPi causing the observed
difference in mortality between different tidal volume
strategies.

In our study, both lower PaW and dpaW were generated by
the decelerating waveform compared to sine and square
waveforms, while the mean airway pressure was kept
constant at all flow patterns. The lower peak pressure during
ventilation suggests a flow mediated airway resistance,
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which can be accounted for by a high initial peak flow
followed by an even distribution of ventilation. A partial
narrowing of some portion of the conducting airways during
the higher initial flow of the decelerating waveform may be
responsible for this. This is comparable in effect to the
changes in airway resistance that occurs during expiratory
flow and may account for the hysteresis observed in the
flow-volume loop across the respiratory cycle. A simple
electrical analog model of the lung and airways composed of
a fixed airway resistance and lung compliance independent
of the applied waveform will result the mean airway
pressure to be the same. These results show that any simple
electrical model used to describe this requires modification
as an explanatory tool for understanding the differences
between the various inspiratory waveforms. An alternative
model of airway resistance may be flow sensitive and exhibit
dynamic characteristics that are flow dependent. This could
explain why the decelerating flow waveform might generate
less harmful effect within the lung. More interesting,
perhaps, are the findings with regard to dpaW. This
parameter may relate more closely to the physical excursions
that alveoli undergo during the respiratory cycle. These
measurements suggest that decelerating waveform
ventilation may cause less barotrauma and can be used as an
added source of protection to the airways in these patients.

One of the limitations of this study is the small number of
subjects. Larger randomized clinical studies are needed to
provide support of the results of this study. Another
limitation is short time of equilibration and short time on
each of the waveforms. We do not know if a longer period of
time might increase PaW, dpaW, and PEEPi but it should
theoretically not cause major variations in pulmonary
mechanics. Further clinical testing of respiratory mechanics
with decelerating waveforms in different modes of
ventilation is worth serious consideration. All the findings,
thus far, support the hypothesis that this waveform may be
more effective in the ventilation of critically ill patient with
respiratory failure. The importance of delivering effective
mechanical ventilation to critically ill patients with
respiratory failure while avoiding associated lung injury or
significant hemodynamic compromise cannot be
overemphasized. It is possible that a small numeric
advantage in respiratory parameters with decelerating
waveform pattern can lead to a noticeable beneficial effect
on clinical outcomes in critically ill patients with respiratory
failure.
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