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Abstract

The steady circulation and physiologically interactive nature of blood ensures that this dynamic system encounters, transmits,
and responds to a wide range of biological signals. In this context, we hypothesized that quantitative measurement of the blood
transcriptome can enable the identification and validation of RNA transcripts that are specifically associated with the presence of
a particular disease or clinical condition. In the present study, we have used 631 blood RNA expression profiling in conjunction
with microarray technology to generate highly discriminative panels of 10 pairs of probe sets for each of four separate clinical
conditions (gender, colorectal cancer, prostate cancer and osteoarthritis). The robust training set performance for each disease -
or condition-specific multi-gene panel was corroborated with an independent test set, with areas under the receiver-operating
characteristic curves ranging from 0.87 to 0.93 for each of the four conditions in the test set population. This study demonstrates
that quantitative measurement of the blood transcriptome, in conjunction with microarray technology, can be used to generate
highly discriminative multi-gene panels for many clinical conditions. This approach has great potential to enable the
simultaneous monitoring of multiple disease states or clinical conditions from a single blood sample.

INTRODUCTION

In 1932, physiologist Walter Cannon penned his classic The
Wisdom of the Body [1]. This work introduced the concept
of homeostasis, the process of autoregulation whereby
biological systems self-monitor and self-adjust to preserve
steady state equilibrium in a turbulent, ever-changing
environment.

The circulating peripheral blood system is a critical
integrative force by virtue of the blood’s ongoing real-time
involvement in the regulation, coordination, metabolism and
immune maintenance of essentially all cells, tissues and
organs. Functions of blood cells include transporting
nutrients, oxygen and biomolecules, and removing cellular
wastes. Blood is further intimately involved in immune
surveillance throughout the body, and delivery of immune
factors and healing mediators to sites of disease, infection
and injury. Thus, the steady circulation and physiologically
interactive nature of blood ensures that this dynamic system
encounters, transmits, and responds to, a wide range of
biological signals [2-5].

These dynamic, integrative features of blood, considered in
context with the need for maintaining homeostasis, suggest
that the presence of a specific disease or clinical condition

will be reflected in specific patterns of gene expression in
blood, i.e. transcriptomic signatures. The transcriptome is
the complete set of RNA transcripts present in a cell or
tissue at any one time. Although a particular cell or tissue’s
DNA, or genome, is essentially unchanging, its
transcriptome will vary according to the current
physiological status of the cell or tissue. Thus, we have
hypothesized that transcriptomic signatures in blood which
are specific to states of health or disease can be identified
and used to diagnose such states via transcriptional profiling
of blood [2].

Advances of the past decade have made it possible for
transcriptomes to be quantitatively profiled and compared on
a genome-wide scale using powerful nucleic acid probe
microarray technology [reviewed in 6]. Traditional
microarray analyses are tissue biopsy-based, which limits the
application of array technology to a limited number of
clinical situations in which tissue is readily available. By
contrast, the use of blood samples enables broadening of the
application of transcriptional profiling analysis to a wider
range of diseases and clinical conditions. Thus, blood is an
ideal sample type which overcomes many of the limitations
of traditional microarray studies [7].
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In a series of studies, we and others have demonstrated that
RNA profiles generated from circulating blood can be used
to identify patients with a number of conditions[7,8],
including: lung cancer [9] bladder cancer [10], colorectal
cancer (CRC) [5], osteoarthritis [4], schizophrenia and
bipolar disorder [11,12], kidney diseases [13,14],
cardiovascular diseases [15-17] , Crohn’s disease [18] and
diabetes [19]. In the present study, we have extended this
approach and used single subject transcriptional signatures
from a single blood sample to simultaneously assay for the
detection of multiple diseases in a heterogenous human
population.

MATERIALS AND METHODOLOGY

PATIENT SAMPLES

We recruited more than 1500 patients from multiple
institutions between January, 2004 and July, 2008. We
selected 631 patients for the current study of three distinct
diseases. Informed consent was obtained according to the
research protocols approved by the research ethics boards of
each institution involved.

BLOOD COLLECTION AND RNA ISOLATION.

Samples of peripheral whole blood (10 ml) were collected in

EDTA VacutainerTM tubes (Becton Dickinson, Franklin
Lakes, N.J.), and stored at 4ºC until processing (within 6
hours). RNA was isolated at six different centers according
to a standardized protocol. Plasma was removed after
centrifugation and a hypotonic buffer (1.6 mM EDTA, 10
mM KHCO3, 153 mM NH4Cl, pH 7.4) was added at a 3:1

volume ratio to lyse the red blood cells. The mixture was
centrifuged to yield a pellet containing predominantly white
blood cells, and the pellet was re-suspended into 1.0 mL of

TRIzol® Reagent (Invitrogen Corp., Carlsbad, CA) and 0.2
mL of chloroform. RNA quality was assessed on an Agilent
2100 Bioanalyzer RNA 6000 Nano Chip. RNA quantity was
determined by absorbance at 260 nm/280 nm in a Beckman-
Coulter DU640 Spectrophotometer. The samples were then
stored at -80ºC at a single center.

MICROARRAY HYBRIDIZATION.

Five-microgram samples of purified total RNA were labelled
and analyzed using Affymetrix U133Plus 2.0 GeneChip
oligonucleotide arrays (Affymetrix; Santa Clara, CA).
Hybridization signals were adjusted in the Affymetrix
GCOS software (version 1.1.1), using a scaling factor that
adjusted the global trimmed mean signal intensity value to
500 for each array. The CEL files were expressed using
MAS5 methods. Hybridizations were carried out in batches

across 30 lots of chips (3005291 to 4033799) between 2004
and 2008. All samples passed the recommended quality
checks (background, present call, Raw Q, Scale Factor, and
3’/5’ ratios for Gapdh and ActB).

DATA ANALYSIS

The expression levels from probe sets labelled “present”
were log-transformed (base 2). Only the data from probe sets
labelled as “present” in all samples across all studies were
used (7,226 probe sets). For each study, samples with the
condition of interest were labelled as “with condition of
interest”, while all other samples were labelled as “without
condition of interest”.

The probe set data for each condition of interest were
organized into combinations of 10 pairs of genes. Each
combination was evaluated for its discriminative power on
the training set by calculating the receiver-operating
characteristic (ROC) area under the curve (AUC). The
combination that achieved the best ROC AUC was selected
as the panel for the condition of interest. The process was
repeated for each condition of interest.

Unique discriminative panels were determined for each
condition of interest, namely: gender, colorectal cancer,
prostate cancer and osteoarthritis. After the training set
panels were determined for each condition of interest, a
second set of studies was performed using an independent
test set to further assess the discriminative power of the
panels.

Analysis of the final results and generation of charts was
performed using Microsoft Excel and MedCalc
(www.medcalc.be).

SAMPLES WITH CONDITION OF INTEREST

1) Gender discrimination

First, we evaluated the reliability of the measurements and
data analysis by searching for gene panels that can
discriminate between genders. This was conducted in two
phases.

1) X-chromosome located genes

In this first phase, we searched for probe sets that exhibit
consistent differential expression based on copy number
difference.
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2) Autosomal genes

In this second phase, as a model of general disease, we
searched for discriminatory probe sets for autosomal genes
that were effective at discriminating gender.

The training set was composed of 352 subjects
(121F:231M). The test set had 279 subjects (96F: 183M).

2) Colorectal cancer

Training set = 80; test set = 68.

3) Prostate cancer

Training set = 80; test set = 63.

4) Osteoarthritis

Training set = 103; test set = 93.

Samples without Condition of Interest

1) No disease

Training set = 30; test set = 18.

2) Ovarian cancer

Training set = 29; test set = 7.

3) Bladder cancer

Training set = 30; test set = 12.

4) Crohn’s disease

Training set = 0; test set = 18.

RESULTS

GENDER DISCRIMINATION

Figure 1

Figure 1 Gender discrimination

Each row represents one sample. The first column represents
the panel using x-linked genes, while the second column
uses only autosomal genes for discrimination. Dark grey
indicates a “female” prediction. Light grey indicates a
“male” prediction. Accuracy for each gender is defined as
the percentage of correctly predicted subjects from the total
number of subjects.

Figure 2

Table 1 Reference Panels

The panels of 10 pairs of probe sets with corresponding
genes used for gender and disease predictions
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1) X-CHROMOSOME LOCATED GENES

The final panel of 12 genes represented by 10 pairs of probe
sets is detailed in Table 1A. Accuracy was greater than 99%
for both male and females in the training set and 98% or
greater for both genders in the test set. Several of the probe
sets were expressed differentially at 1.4-fold and 1.6-fold
which suggests that detection at less than 2-fold is possible
with microarray technology.

2) AUTOSOMAL GENES

As a general model of disease, we searched for
discriminatory probe sets for autosomal genes (Table 1B)
and were able to achieve a ROC AUC of 0.96 in the training
set (accuracy: 92%F; 87%M) and 0.87 on the test set
(accuracy: 78%F; 82%M).

MULTI-DISEASE DISCRIMINATION

The 20-gene probe set panels for each of the three different
diseases are detailed in Table 1C-E. The discriminative
power of each of these classification panels is detailed in
Figure 2 with samples arranged by rows, grouped by disease
type.

Figure 3

Figure 2 Disease discrimination

Each row represents one sample. Each column represents a
disease prediction. Dark grey indicates a “positive
prediction”; light grey indicates a “negative prediction”.
Sensitivity is defined as the percentage of subjects predicted
to have the disease of interest from the number of subjects

which actually have the disease of interest. Specificity is
defined as the percentage of correctly predicted subjects as
not having the disease of interest from all subjects that do
not have the disease of interest.

The training set predictions (Figure 2A) achieved ROC AUC
values of 0.96, 0.91 and 0.95 for colorectal cancer, prostate
cancer and osteoarthritis, respectively. Sensitivity was 90%,
89% and 90% and specificity was 87%, 80% and 88% for
colon cancer, prostate cancer and osteoarthritis. Each of the
three disease-specific panels was able to reject most of the
samples from conditions that were not included in the
training phase (no disease, ovarian cancer, bladder cancer).

The independent test set results (Figure 2B) confirmed that
each of the three disease-specific panels was effective at
discriminating the particular disease it had been trained on,
but was not discriminatory for either of the other two
diseases nor for any of the three other sets of samples
(conditions not of interest, bladder and ovarian cancers and
Crohn’s disease). Colorectal cancer had ROC AUC of 0.90,
prostate cancer, of 0.93, and osteoarthritis of 0.89;
corresponding sensitivities were 88% (colorectal cancer),
94% (prostate cancer), and 82% (osteoarthritis) with
specificity at 74% (colorectal cancer), 79% (prostate cancer),
and 82% (osteoarthritis).

DISCUSSION

To our knowledge, all studies to date on blood-based disease
biomarkers have focused on identification of biomarkers for
single diseases which can, at times, hide poor false positive
results when predicting subjects with other diseases. In this
study, we have expanded this approach to enable us to detect
several diseases at once using one blood sample. The clinical
utility of this approach should be immediately apparent. The
ability to detect numerous pathologies at one time would
simplify population disease screening. As this type of blood
based tool becomes refined and applicable to be used in
general populations, a patient could be screened at one visit
for a range of diseases, for example, colorectal cancer and
prostate cancer, rather than using several different and
invasive tests.

As we show in this report, using integrated multi-disease
analysis our laboratory can identify disease-specific gene
expression signatures by quantitative measurement of the
blood transcriptome. We have succeeded in markedly
reducing crosstalk noise from confounding factors and were
able to generate formulae for detecting the presence of
certain diseases with specificity > 90% for various types of
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organ-specific diseases including cancers. The inclusion of
multiple diseases in this study increases the sample
variability which can lead to improved performance [3,20].

It should also be pointed out that this approach inherently
allows detection of multiple simultaneous conditions as the
discrimination is not an either/or decision, but rather a set of
independent parallel decisions.

This independent parallel approach is partially supported by
preliminary results from a small set of patients with Crohn’s
disease. It is known that Crohn’s disease is associated with a
higher incidence of colorectal cancer [21], and it would
therefore be beneficial for a colorectal cancer diagnosis to be
able to differentiate patients with Crohn’s disease that will
eventually progress to colorectal cancer from those patients
who will not.

At the time of this study, there were not a sufficiently large
number of samples with Crohn’s disease available to
construct a training set. The medical record for these
samples was incomplete and the presence of colorectal
cancer was unknown. As a result, these samples were only
included in the test set to evaluate the performance of the
three diagnosis panels.

Six of the 18 samples with Crohn’s disease had a positive
call on the colorectal cancer panel, of these, one also had a
positive call on prostate cancer along with two others and
only one had a positive call for osteoarthritis. While these
numbers are small, they do show a trend toward more
positive calls for colorectal cancer than for prostate cancer or
osteoarthritis, which is what would be expected if the panels
are actually recognizing a biological signal rather than
merely some random noise.

We initially demonstrated that subtle gene expression
differences of less than 2-fold can be measured reliably as
evidenced by the discrimination of gender differences with
100% accuracy from X-linked genes. We also attempted to
discriminate gender using only autosomal genes (ROC
AUC: 0.87, accuracy: 80%) in order to demonstrate the level
of performance that is likely achievable using this method
for disease/clinical condition discrimination.

The generation of unique, 10 pairs of probe sets for each of
the three disease conditions of interest (colorectal cancer,
prostate cancer, osteoarthritis) resulted in promising
discriminatory training set panels for each disease with the
ROC AUCs ranging from 0.91 to 0.96. The robust
discriminatory capacity for each disease panel was

confirmed by the independent test set (ROC AUC range:
0.89 to 0.93). The close concordance between the training
and test set data was reassuring, given that there were a
number of potentially confounding variables including:
multiple clinical sites used for sample collection; multiple
laboratories used for RNA extraction; multiple different chip
and reagent lots, the small expression-fold changes seen in
blood RNA profiling as compared with the large changes
seen in tissue expression profiling, varying durations of
RNA storage and multiple microarray hybridizations
extending across a four-year span.

We have recently reported on the use of blood RNA
profiling with a seven-gene panel utilizing quantitative real-
time polymerase chain reaction (qRT-PCR) to discriminate
subjects with colorectal cancer from those with no cancer
[4]. This approach allows an individual’s relative risk of
currently having colorectal cancer to be determined, thereby
providing clinically actionable information about the need
for further investigations such as colonoscopy. Although this
method is a powerful tool for improving early detection of
disease and provides novel information to enhance clinical
decision-making, extending qRT-PCR technology to
simultaneously assay for multiple diseases or clinical
conditions is unsustainable. This relates to the practical
limitations on the number of genes that can be included in a
panel using qRT-PCR. The present study suggests that,
microarray technology, with its ability to simultaneously
measure the activity of a large number of RNA transcripts,
can facilitate the application of blood transcriptome profiling
to generate and assay multiple disease panels.

CONCLUSION

In this study we used gender data to show in a
straightforward and non-controversial manner the clinical
utility of the integrated multi-disease analysis test. The test
clearly differentiates male and female (98-99% accuracy) for
both male and females even when sex chromosomal factors
are excluded. That is, sexes were shown to be different in
blood samples using (autosomal) genes, not genes related to
the sex chromosomes. The test differentiates male and
female regardless of confounding factors such as using
samples from different clinics, over several years and use
different microarray lots. Similarly, the test methodology is
able clearly to indicate the presence or absence of various
diseases (colorectal cancer, osteoarthritis, prostate cancer) in
the samples. Such a test can be expanded to include other
types of cancer and other diseases.
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Thus the quantitative transcriptomic approach has significant
advantages as a potential tool for personalized medicine.
This approach is not a genetic DNA marker test or
polymorphism biomarker test which are the tests currently
available and which have been sharply criticised as failing to
agree in disease prediction between laboratories and failing
to capture genetic contributions to disease risk. [22, 23]
Rather, our quantitative measurement of the blood
transcriptome reflects in real-time, gene expression
alterations occurring over the whole transcriptome as this in
turn guides phenotypic disease phenomena.

The present study demonstrates that blood transcriptome
profiling in conjunction with microarray technology can be
used to generate highly discriminative multi-gene panels for
many diseases. This approach has great potential to enable
the simultaneous monitoring of multiple disease states or
clinical conditions from a single blood sample, which could,
as the process is refined and developed, hold great promise
as a population multiple disease screening tool.

ACKNOWLEDGEMENTS

We would like to thank Dimitri Stamatiou, and Jay Ying for
their technical assistance and Ma Jun for helpful comments
and criticism of this manuscript. CC Liew, Samuel Chao,
Faysal El Khettabi, Hongchang Tang and K Wayne Marshall
are all employed by GeneNews Ltd, who sponsored this
research.

References

1. Cannon WB. The wisdom of the body. WW Norton: New
York 1932.
2. Liew CC. 2002. Method for the detection of gene
transcripts in blood and uses thereof. US Patent No.
7,598,031, filed: October 9, 2002, and issued October 6,
2009.
3. Dumeaux V, Olsen KS, Nuel G, et al: Deciphering
Normal Blood Gene Expression Variation – the NOWAC
Postgenome Study. PloS Genetics; 2010; 6:e1000873.
4. Marshall KW, Zhang, H, Yager T, et al: Blood-based
biomarkers for detecting mild osteoarthritis in the human
knee. Osteoarthritis Cartilage; 2005; 13: 861-871.
5. Marshall KW, Mohr S, El Khettabi F, et al: A Blood-
based biomarker panel for stratifying current risk for
colorectal cancer Int J Cancer; 2010;126:1177-1186.
6. Hocquette JF: Where are we in genomics? J Physiol
Pharmacol; 2005; 56 S3: 37-70.
7. Mohr S, Liew CC: The peripheral blood transcriptome:
new insights into disease and risk assessment. Trends Mol

Med; 2007; 13: 422-432.
8. Edelman LB, Toia G, Geman D, Zhang W, Price ND:
Two-transcript gene expression classifiers in the diagnosis
and prognosis of human diseases. BMC Genomics; 2009;
Dec 5; 10: 583. [epub ahead of print]
9. Showe MK, Vachani A, Kossenkov AV, et al: Gene
expression profiles in peripheral blood mononuclear cells
can distinguish patients with non-small cell lung cancer from
patients with nonmalignant lung disease. Cancer Res; 2009;
69: 9202-10.
10. Osman I, Bajorin D, Sun TT, et al: Novel blood
biomarkers of human urinary bladder cancer. Clin Cancer
Res; 2006; 12(11 Pt 1): 3374-80.
11. Tsuang MT, Nossova N, Yager T, et al : Assessing the
validity of blood-based gene expression profiles for the
classification of schizophrenia and bipolar disorder: A
preliminary report. Am J Med Genet B Neuropsychiatr
Genet; 2005; 133B: 1-5.
12. Glatt SJ, Everall IP, Kremen WS, et al: Comparative
gene expression analysis of blood and brain provides
concurrent validation of SELENBP1 up-regulation in
schizophrenia. Proc Natl Acad Sci USA; 2005; 102:
15533-8.
13. Alcorta D, Preston G, Munger W, et al: Microarray
studies of gene expression in circulating leukocytes in
kidney diseases. Exp Nephrol; 2002; 10: 139-49.
14. Twine NC, Stover JA, Marshall B, et al: Disease-
associated expression profiles in peripheral blood
mononuclear cells from patients with advanced renal cell
carcinoma. Cancer Res; 2003; 63: 6069-75.
15. Bull TM, Coldren CD, Moore M, et al: Gene microarray
analysis of peripheral blood cells in pulmonary arterial
hypertension. Am J Respir Crit Care Med; 2004; 170: 911-9.
16. Ma J, Dempsey AA, Stamatiou D, Marshall KW, Liew
CC: Identifying leukocyte gene expression patterns
associated with plasma lipid levels in human subjects.
Atherosclerosis; 2007; 191: 63-72.
17. Deng MC, Eisen HJ, Mehra MR, et al: Noninvasive
discrimination of rejection in cardiac allograft recipients
using gene expression profiling. Am J Transplant; 2006; 6:
150-160.
18. Burakoff R, Hande S, Ma J, et al: Differential Regulation
of Peripheral Leukocyte Genes in Patients with Active
Crohn's Disease and Crohn's Disease in Remission. J Clin
Gastroenterol; 2010; 44:120-126.
19. Takamura T, Honda M, Sakai Y, et al; Gene expression
profiles in peripheral blood mononuclear cells reflect the
pathophysiology of type 2 diabetes. Biochem Biophys Res
Comm; 2007; 361: 379-384.
20. Shen-Orr SS, Tibshirani R, Khatri P, et al: Cell type-
specific gene expression differences in complex tissues.
Nature Methods; 2010;7:287-9.
21. Freeman HJ. Colorectal cancer risk in Crohn’s disease.
World J. Gastroenterol 2008; 14(12): 1810-1811
22. Ng PC, Murray SS, Levy S, Venter JC: An agenda for
personalized medicine. Nature; 2009; 461: 724-6.
23. Samuel P. Dickson, Kai Wang, Ian Krantz, Hakon
Hakonarson, David B. Goldstein: Rare variants create
synthetic genome-wide associations. PloS Biology; 2010
Jan. 8:1.



Multiple Diseases Discriminated by Quantitation of Blood Transcriptome

7 of 7

Author Information

Samuel Chao
GeneNews Ltd

K Wayne Marshall
GeneNews Ltd

Faysal El Khettabi
GeneNews Ltd

Hongchang Tang
GeneNews Ltd

C.C. Liew
GeneNews Ltd

Samuel Mok
M.D. Anderson Cancer Center


