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Abstract

Purpose: Classification of human matrix metalloproteinase’s (MMP’s or mmp’s) using various machine learning techniques so
as to reduce the time and economic constraint which protein classification poses on the existing wet lab techniques. Methods:
The domain information of various MMP’s was obtained from UniProtKB/Swiss-Prot of ExPASy Proteomics Server. Various
machine learning tools like Naïve Byes, Random Forest and Decision tree were used. The domain data for all the eight classes
was incorporated into the three classifiers. Results: Out of the three the Naïve Bayes and Random forest performed best and
gave accuracy of 78.26% and 73.91% where out of 23 MMP’s taken for cross validation 18 were correctly classified by Naïve
Bayes classifier.Discussion and Conclusion: The above classifier takes into account the domain structure of all the known 23
MMP’s as the Naïve Bayes classifier performs the best among all the three classifiers, it qualifies as most suitable choice for
classification. Information about substrate specificity and tissue inhibitor of matrix metalloproteinase’s (TIMP) was not included
since information about these is not completely available. No such algorithm for classification of MMP’s has been reported so far
in the literature. Such classification can be extended to other proteins as well where adequate domain information is available.

INTRODUCTION

MMP’s have major role to play in skin aging. Besides other
causes of aging exposure to ultraviolet (referred to as UVA
or UVB) radiation emanating from sunlight accounts for
about 90% of the symptoms of premature skin ageing, and
most of these effects occur by 20 years of age. Both UVA
and UVB rays cause damage leading to wrinkles, lower
immunity against infection, ageing skin disorders, and
cancer. Even small amounts of UV radiation damage
collagen fibers (the major structural protein in the skin) and
cause accumulation of abnormal elastin (the protein that
causes tissue to stretch). During the process, large amounts
of enzymes called metalloproteinase’s are produced. The
normal function of these enzymes is to remodel the sun-
injured tissue by synthesizing and reforming collagen. This
is an imperfect process, however, and to achieve it, some of
these enzymes actually degrade collagen. The result is an
uneven formation (matrix) of disorganized collagen fibers
called solar scars. If this process of imperfect skin rebuilding
occurs over and over, wrinkles result. Sunlight damages
collagen fibers (the major structural protein in the skin) and
causes accumulation of abnormal elastin (the protein that
causes tissue to stretch) which leads to production of
metalloproteinase’s [1].

MMP’s have been found to play important role in various
aspects of cancer. These clinical trials have led to the
recognition that specific mmps are used in conjunction with
cytotoxic chemotherapy in early stage of cancer. In case of
cancer MMP-2 and MMP-9 play an important role in
degradation of type IV collagen which is a major protein
component of basement membrane [11], [12].

Many reports have indicated the role of MMP1 and MMP9
in rheumatoid and osteoarthritis. The enzyme aggrecanase, a
member of the ADAM family of metalloproteinases is
thought to play an important role in articular damage [13].

Various studies have shown an increased expression of
MMP-9 at the sites of atherosclerosis and aneurysm
formation [2]. Secretion and activation of MMP’s by
macrophages induces degradation of E.C.M. in the
atherosclerosis plaque and plaque rupture. Hence MMPs are
proposed to represent sensitive markers of inflammation in
patients with coronary heart disease.

Increased level of MMP’s has been found in various lung
diseases including acute respiratory distress syndrome,
asthama, bronchiectasis, and cystic fibrosis. More studies
regarding MMP inhibitors are required to be done as
potential therapy [3].
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MMP’s have been found to be a key player in neurological
disorders like Multiple sclerosis and Guillain-Barre’s
syndrome etc [2], [4].

MMP8 and MMP9 which are stored in the granules of
polymorphonuclear leukocytes are found to be involved in
inflammatory and infectious processes. It was proposed that
specific MMP9 inhibition constitutes a potential approach
for the treatment of septic shock syndromes [5].

Acute and chronic wounds are found to have high levels of
MMP2 and MMP9. It has been suggested that ulcers
generate a local environment of activated MMPs which
delay the process of healing [2]. MMP9 has been found to
play a part in blistering skin diseases and contact
hypersensitivity. MMP’s have long been implicated in
periodontal disease and more recently, in inflammatory
bowel diseases [7].

Thus there is a need for better understanding of the role
played by these MMPs in pathophysiological conditions of
the body for the molecular biologists and scientists for
devising new vaccine candidates and therapeutic agents for
prevention and cure of disease. Thus there arises a need for
identification and classification of MMP’s and mapping
them with functional and structural aspects. MMP’s have
been classified by using substrate specificity and cellular
localization [16]. Some wet lab experiments have been
performed for identification and classification of MMP’s but
they are highly expensive and time consuming. Traditionally
MMP’s have been classified on evolutionary and functional
basis. But no such attempt has been made to classify MMPs
on the basis of domain knowledge using computational
techniques.

In view of the above a computational model has been
developed for classification of MMP’s using the domain
structure. The results are cross validated with existing
classes in UniProtKB/Swiss-Prot of ExPASy Proteomics
Server.

MMP’s are made up of the following homologous domains:

1) Predomain- It contains a signal peptide or a leader
sequence which targets MMPs to the secretory or plasma
membrane insertion pathway.

2) Prodomain– Contains a conserved cysteine switch motif
of PRCXXPD for making the proMMP latent by occupying
the active site Zinc and making the enzyme inaccessible to
substrate.

3) Zinc containing catalytic domain--The structure of this
domain is quiet similar in all MMPs. It has a motif,
HEF/LGHS/ALGLXHS, which coordinates a zinc atom at
the active site. Besides catalytic zinc active site contains
structural zinc and two to three calcium ions. A sub-site- or
S1’-pocket- or channel-like structure is a binding site for a
substrate or inhibitor molecule within the active site, which
is quiet different in size and shape among various MMPs.

4) Hemopexin domain which mediates interactions with
substrates and confers specificity of the enzymes; and

5) Hinge region which links the catalytic and the hemopexin
domain [14], [15].

Besides this other domains are found in MMPs which give
additional properties to them.

The smallest MMP in size, MMP-7 does not contain
hemopexin domain yet displays substrate specificity. The
membrane type MMPs (MMP-14, MMP-15,
MMP-16,MMP-24) contain a domain which is trans
membranous and about 20 amino acid in length with a small
cytoplasmic domain included in the structure as well. The
other membrane type MMPs contain a glycosylphosphatidyl
inositol linkage for attaching them to cell surface hence
classified as glycosyl-phosphatidyl inositol (GPI)-linked
MMPs. The gelatin binding MMPs contain three internal
repeats called fibronectin domain for binding to their
substrate. Furin-activated secreted MMPs (MMP-11 and
MMP-28) contain recognition motif for furin-like serine
proteinases present in their catalytic domain for intracellular
activation. This motif is also found in the vitronectin-like
insert MMPs (MMP-21), and the MT-MMPs [16]. MMP-23
has cysteine array and immunoglobulin (Ig)-like domains
but no conserved hemopexin-like domain [17]. It is also
classified as type II transmembrane MMP, since it has an
amino-terminal signal anchor (CA) targeting it to the cell
membrane [17].

MATERIAL AND METHODS

All the above said domains were incorporated into the
classifier on the basis of which MMPs were divided into
eight classes. For classification purpose various classes were
abbreviated as follows

Class1) Minimal domain MMP’s (MD)

Class2) Simple Hemopexin domain containing MMP’s
(SHDC)
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Class3) Gelatin binding MMP’s (GB)

Class4) Furin activated secreted MMP’s (FAS)

Class5) Transmembrane MMP’s (Type1)(TMT)

Class6) Glycosyl-phosphatidyl inositol linked
MMP’s(GLM)

Class7) Vitronectin-like insert MMP’s (VLI)

Class8) Cysteine/Proline-rich IL-1Receptor-like domain
MMP’s (CPR)

To improve the accuracy of the classifier further the
localization of MMP,s are included as one of the
characteristics. The domain and motif knowledge of all
MMPs was collected from Swissprot/Uniprot server of
Expasy and the model was built using various modules of
Weka. The three machine learning classifiers namely
Random Forest, Naïve Bayes and Decision Tree have been
developed using above data. The details of three approaches
employed for classification are given below

RANDOM FOREST

Random Forest is a class of ensemble method specially
designed for decision tree classifiers .It combines the
prediction made by multiple decision trees where each tree is
generated based on the value of an independent set of
random vectors .The random vectors are generated from a
fixed probability distribution .Bagging using decision trees
is a special case of random forests ,where randomness is
injected into the model building process by randomly
choosing N samples with replacement ,from the original
training set. It has been theoretically proved that the upper
bound for generalization error of random forests converges
to the following expression when the number of trees is
sufficiently large [8].

Figure 1

Where ρ is the average correlation among the trees and s is a
quantity that measures the strength of the tree classifier. The
strength of a set of classifier refers to the average
performance of the classifier where performance is measured
probabilistically in terms of the classifier margin.

Figure 2

Where Yθ is the predicted class of X according to a classifier

built from some random vector θ. The higher the margin is,
the more likely it is that the classifier correctly predicts a
given example X.

NAÏVE BAYES

A naïve bayes classifier estimates the class conditional
probability by assuming that the attributes are conditionally
independent, given the class label y. The conditional
independence assumption can be formally stated as follows
[8].

The main advantage of Bayesian classifiers is that they are
probabilistic models, robust to real data noise and missing
values. The Naive Bayes classifier assumes independence of
the attributes used in classification but it has been tested on
several artificial and real data sets, showing good
performances even when strong attribute dependences are
present. In addition, the Naive Bayes classifier can
outperform other powerful classifiers when the sample size
is small [9]. Since it also has advantages in terms of
simplicity, learning speed, classification speed, storage space
and incrementality its use is preferred more often.

Figure 3

DECISION TREE

A decision tree (or tree diagram) is a decision support tool
that uses a tree-like graph or model of decisions and their
possible consequences, including chance event outcomes,
resource costs, and utility. Decision trees are commonly used
in operations research, specifically in decision analysis, to
help identify a strategy most likely to reach a goal. Another
use of decision trees is as a descriptive means for calculating
conditional probabilities. In data mining and machine
learning, a decision tree is a predictive model; that is, a
mapping from observations about an item to conclusions
about its target value. More descriptive names for such tree
models are classification tree (discrete outcome) or
regression tree (continuous outcome). In these tree
structures, leaves represent classifications and branches
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represent conjunctions of features that lead to those
classifications. The machine learning technique for inducing
a decision tree from data is called decision tree learning, or
(colloquially) decision trees [8].

The above three classifiers are simulated to obtain the results
and their comparative analysis has been performed.

RESULT AND DISCUSSION

The three domains viz pre, pro and catalytic were discretized
as low, medium and high with the values obtained from
Uniprot/Tremble database of Expasy server. Since rest of the
domains was present in few MMPs only, hence they were
indicated as either present or absent.

The confusion matrix generated from the above is given as
under

Figure 4

Figure 5

MARGIN CURVE

Confidence is measured by the difference between the
estimated probabilities of the true class and that of most
likely predicted class other than the true class, a quantity
known as the margin. The larger the margin, the more
confident the classifier is in predicting the true class. It turns
out that boosting can increase the margin long after the
training error has dropped to zero. The effect can be
visualized by plotting the cumulative distribution of the
margin values of all the training instances for different
numbers of boosting iterations, giving a graph known as the
margin curve .With the above data the margin curve was
generated with high values.

On X-axis margin number was plotted with number of
instances on Y-axis. Out of the 23 instances 5 instances have
values lying between 0 and -1 indicating incorrect
classification and the values lying above 0 and 1 numbered
to 18 indicating the correctly classified instances in the
training dataset.

Figure 6

Figure1---Margin curve for decision tree
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Figure 7

Figure 2---Margin curve for Random Forest

Figure 8

Figure 3---Margin curve for Naïve Bayes

The J48 algorithm of Weka is used to obtain the tree view of
classes as shown in fig4

Figure 9

Figure4---Decision Tree classification of MMPs

The accuracy of results obtained by different algorithms is
presented in Table -1

Figure 10

Table 1: Accuracy of classifiers

Thus we observe that out of the 23 MMPs taken for cross
validation 18 were classified correctly whereas 5 were
classified incorrectly by naïve bayes classifier. This accounts
to 78.2609% accuracy which was the highest among all the
three classifier used here so far. Thus the above classifier is
able to classify MMPs into eight classes for which no
algorithm has been reported in the literature so far. We can
increase the instances by adding domain data of other
organisms like mouse, rat, pig and others but it does not give
any significant change. This implies that the human
instances are alone sufficient to develop the classifier. The
reason is that similarity is 75-85% for amino acid
composition and domain identity is 100% among human and
other organism. Hence inclusion of domain data of other
organisms will not only increase the instances but also
increase the redundancy. The same model can be applied for
organism like mouse, rat etc. for which domain information
is available in UniProtKB/Swiss-Prot of ExPASy
Proteomics Server.

CONCLUSION

The above classifier takes into account the domain structure
of all the known 23 MMPs as the naïve Bayes classifier
performs the best among all the three classifiers, it qualifies
as most suitable choice for classification, information about
substrate specificity and tissue inhibitor of matrix
metalloproteinases (TIMP) was not included since
information about these is not completely available. The
authors wish to incorporate it as soon as more information is
available in the future. The above model is useful for
generating information which can be of great use in
prediction of structure and function of MMPs since they are
key drug targets. The MMP’s belonging to a particular class
will have functional domains corresponding to that class
which will ease in locating the active site(s) as well as the
binding site(s) in the classified domain and hence it can be
the potential active site or binding site for the drug. As more
MMPs are discovered the above classifier can be trained to
improve the accuracy of results.
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