Two Survival Cases Of Severe Aconite Poisoning By Percutaneous Cardiopulmonary Support System And Cardiopulmonary Bypass For Fatal Arrhythmia: A Case Report

H Niinuma, H Aoki, T Suzuki, M Shibata, Y Moriai, T Suzuki, S Ohuchi, K Kawazoe, K Hiramori

Citation

Abstract
Objective: to propose adequate treatment of fatal aconite poisoning using percutaneous cardiopulmonary support system and cardiopulmonary bypass.
Design: case study.
Setting: cardiac care unit in a university hospital.
Patient: a 17-yr-old man ingested aconite roots to commit suicide and a 41-yr-old man eaten aconite tubers by accident.
Intervention: immediate application of percutaneous cardiopulmonary support system and cardiopulmonary bypass for fatal arrhythmia caused by aconite.
Measurements and main results: continuous ecg monitoring was performed. Concentrations of aconites in blood were measured by gas chromatography selected ion monitoring during institution of percutaneous cardiopulmonary support system and cardiopulmonary bypass. The changes of aconite concentration in blood showed that these concentrations are decreased under critical level 24 hours later from ingestion. At the same time fatal arrhythmias were also disappeared. The patients improved fatal arrhythmia and systemic circulation and discharged without neurological deficit.
Conclusion: immediate application of percutaneous cardiopulmonary support system and cardiopulmonary bypass enable to survive fatal aconite poisoning patients.

INTRODUCTION
Aconite tubers are most toxic wild plants distributed from Asia to western Europe. It achieved some notoriety in the 19th century as an agent for homicides and suicides. In modern times, aconite has been used as chinese herbal medicine, which are freely purchased from herb shop and consumed a doctation by herbal practitioner for pain control in northern hemisphere. In Japan, some cases of aconite poisoning appeared as result of committing suicide or accidental ingestion, mistaken for edible grass.

However aconite alkaloids have potential of serious and even fatal cardiotoxicity, which management has still remained difficult to save in patients with therapeutic resistant fatal arrhythmia.

This report details two-survival cases of severe aconite-induced cardiotoxicity using percutaneous cardiopulmonary support system (pcps and cardiopulmonary bypass) (cpb with changes of concentration of aconite alkaloids in blood and urine samples measured by gas chromatography selected ion monitoring).

CASE REPORTS
CASE 1
A 17-year old man had roots of “toricabuto”, one of wild plant known as monkshood, which contains aconite alkaloids to commit suicide. Two hours later he began nausea, vomiting and chest discomfort, and then he was transferred to hospital. At that time, ventricular tachycardia and ventricular fibrillation appeared with a rapid faint pulse, weak respiration, and loss of consciousness. Four and a half hours later, he was transported to our hospital by ambulance.
Two Survival Cases Of Severe Aconite Poisoning By Percutaneous Cardiopulmonary Support System And Cardiopulmonary Bypass For Fatal Arrhythmia: A Case Report

Two cases of severe aconite poisoning were reported. Case 1 involved a patient who developed cardiac arrest and apnea on admission. Cardiopulmonary resuscitation, intubation, and mechanical ventilation were immediately performed. A twelve-lead electrocardiogram showed multifocal tachycardia, torsade de pointes with rapid degeneration of ventricular fibrillation. Portable chest x-ray revealed no abnormality and laboratory examination showed slight elevation of liver enzymes. Na, K, and Cl were 141.0, 4.6, and 106 meq/l respectively. Despite intravenous infusion of several types of antiarrhythmics, such as lidocaine, mexiletine, magnesium, procaine, and over thirty times of cardioversion, the arrhythmia persisted. Forty minutes later, percutaneous cardiopulmonary support was performed to maintain cerebral and visceral circulation. Hypothermic therapy of 32 degree of rectal temperature was also performed to prevent brain damage and organ function. The patient was maintained at least 60mmhg of systolic blood pressure and 50ml/hour of urine. Five hours later, sinus rhythm was restored. The patient improved and was transferred to the cardiac care unit for intensive care. Five hours later, he showed decreased appearance of ventricular fibrillation. Fifteen hours later, sinus rhythm was restored and he recovered from shock. About 48 hours later, aconitine concentration in blood was over 0.2ng/ml at nine hours later from his ingestion. It took eighteen hours for the concentration to decrease below 0.12ng/ml. The patient discharged nineteen days following admission without any neurological deficit.

Case 2 involved a 41-year old male who ate “torikabuto” aconite tuber mistaken for edible grass. Soon after eating it, he developed symptoms of numbness, nausea, vomiting, and dysarthria and was admitted to the emergency room. He developed ventricular tachycardia and torsade de pointes with rapid degeneration of ventricular fibrillation. Portable chest x-ray was normal and laboratory examination revealed no abnormality. On admission, he was transferred to the cardiac care unit for intensive care. Two hours later, frequent ventricular premature contractile appeared. Thirty hours later, ventricular tachycardia and ventricular fibrillation appeared and he became unconscious. He was immediately performed cardiopulmonary resuscitation (cpr, intubation, and mechanical ventilation). After resuscitation, it was difficult to maintain systemic circulation, so percutaneous cardiopulmonary support was applied immediately. Primary flow rate of pcp was set as 3l/min, but it found very difficult to maintain systemic circulation, because of thin in and out catheters. Over forty times of direct current cardioversion were performed for fatal arrhythmia. Twenty-three hours later, we decided to apply cardiopulmonary bypass using canulations to ascending aorta and right atrium. Cardiopulmonary bypass was performed for 186 hours because of prolonged pulmonary edema and left ventricular dysfunction. He also had complicated pulmonary fibrosis and acute renal failure during his admission. Therefore he discharged, ninety-five days following admission with no neurological deficit.

Discussion
Aconite alkaloids are well known as one of herbal medicine,
and commonly used in Asia\(^2,3\). However, they have potential
of serious and even fatal cardiotoxicity, which management
has still remained difficult to save patients with fatal
arrhythmia\(^4\). Some previous reports showed effectiveness
of antiarrhythmics\(^1,6\), such as mexiletine, lidocaine,
magnesium sulfate which had no effect in these cases.
However, in our cases, any cardiopulmonary resuscitation,
antiarrhythmics and direct current cardioversion had not
effective as a therapy in critical phase to maintain systemic
circulation.

Fitzpatrick et al reported a first survival case of fatal aconite
poisoning using cardiopulmonary bypass system and left
ventricular assist device\(^13\), but other reports detailed no
available therapy for severe case that had fatal arrhythmia\(^14,15\).
Cpb and pcpss are usually used to maintain systemic
circulation during cardiac surgery or severe cardiac
dysfunction. Our first case, primary application of pcpss had
much effectiveness for maintaining systemic circulation that
enabled to keep renal function. According to the changing of
aconites concentration in blood and urine measured by
gc/sim\(^8\), aconites disappeared from blood 24hours after
ingestion and arrhythmia also disappeared simultaneously,
but those in urine were detected for a few days. In second
case, arrhythmia was also disappeared at 24 hours after
ingestion. These results shows that it may take about 24
hours to decrease the concentration of aconites in blood less
than 0.12 ng/ml, associated with improvement of
arrhythmia. In addition, ohno et al. Reported the influence of
tetrodotoxin, which attenuated toxic effects of aconitine in
vivo, which might be an antagonist for aconites\(^16\).

Therefore, in fatal case, immediate application of pcpss
and/or pcb must be considered to rescue severe aconites
poisoning patient, which enable to maintain systemic
circulation until the concentration of aconite alkaloids
decrease below 0.12 ng/ml in blood within first 24hours.

CORRESPONDENCE TO AUTHOR
Hiroyuki Niinuma MD, 19-1, Uchimaru, Morioka, Iwate,
Japan. Second Department Of Internal Medicine, Iwate
Medical University. Phone +81 19 651 5111 Ext 2324, Fax
+81 19 651 0401. Email H_Niinuma@Imu.Ncvc.Go.Jp

References
Heart J 1958; 20: 140-142
2. Y.T. Tai, P.P. But, K. Young, C.P. Lau. Cardiotoxicity
After Accidental Herb-Induced Aconite Poisoning. Lancet
1992; 340: 1254-1256
Vet Hum Toxicolo 1994; 36: 326-328
Chan, J.A. Critchley. Aconite Poisoning Due To Chinese
Herbal Medicines: A Review. Vet Hum Toxicolo 1994; 36:
452-455
Shaw, V.S. Murray. Toxicity Following Accidental
Ingestion Of Aconitin Containing Chinese Remedy. Hum
Exp Toxicol 1996; 15: 839-842
7. P. Honerjager, A. Meissner. The Positive Inotropic Effect
Of Aconitine. Naunyn Schmiedebergs Arch Pharmacol
1983; 322: 49-58
8. N. Yoshioka, K. Gonmori, A. Tagashira, O. Boonhooi, M.
Hayashi, Y. Saito, M. Mizugaki. A Case Of Aconite
Poisoning With Analysis Of Aconite Alkaloids By
Distribution Of Aconite Alkaloids In Body Fluids And
Tissues In A Suicidal Case Of Aconite Ingestion. J Anal
Toxicol 2000; 24: 348-353
10. M. Mizugaki, K. Ito, Y. Ohyama, Y. Konishi, S. Tanaka,
K. Kurasawa. Quantitative Analysis Of Aconitin Alkaloids
In The Urine And Serum Of A Male Attempting Suicide By
336-340
11. H. Sato, C. Hamada, C. Konnno, Y. Ohizumi, K. Endo,
H. Hikino. Pharmacological Actions Of Aconitine Alkaloids.
12. Y.T. Tai, C.P. Lau, P.P. But, P.C. Fong, J.P. Li.
Bidirectional Tachycardia Induced By Herbal Aconite
Poisoning. Pace-Pacing, Clin Electrophysiol 1992; 15:
831-839
Wolfenden. Aconite Poisoning Managed With A Ventricular
Fatal Accidental Aconite Poisoning Following Ingestion
Of Chinese Herbal Medicines: A Report Of Two Cases.
15. P.P. But, Y.T. Tai, K. Young. Three Fatal Cases Of
Herbal Aconite Poisoning. Vet Hum Toxicolo 1994; 36:
212-215
16. Y. Ohno, S. Chiba, S. Uchigasaki, E. Uchimae, H.
Nagamori, M. Mizugaki, Y. Ohyama, K. Kimura, Y.
Suzuki. The Influence Of Tetrodotoxin On The Toxic Effects Of
Author Information

H. Niinuma
Second Department Of Internal Medicine, Iwate Medical University

H. Aoki
Emergency And Critical Care Center, Iwate Medical University

T. Suzuki
Memorial Heart Center, Iwate Medical University

M. Shibata
Emergency And Critical Care Center, Iwate Medical University

Y. Moriai
Second Department Of Internal Medicine, Iwate Medical University

T. Suzuki
Emergency And Critical Care Center, Iwate Medical University

S. Ohuchi
Memorial Heart Center, Iwate Medical University

K. Kawazoe
Memorial Heart Center, Iwate Medical University

K. Hiramori
Second Department Of Internal Medicine, Iwate Medical University