Concomitant Elbow and Perilunate Dislocation: Floating Forearm
K Prasad, B Dayanandam, H Gakhar, U Attarwala, K Karras

Citation

Abstract
Concomitant ipsilateral elbow and perilunate dislocation - “floating forearm”- is an extremely rare injury. The reported risk of missed initial diagnosis in perilunate dislocations is as high as 25%, which can increase with an obvious elbow dislocation after high-energy trauma. The potential for missed concomitancy and adverse outcome is further compounded in an intoxicated patient, especially if the initially obvious elbow dislocation is reduced and immobilised in an above elbow back slab. Then, if the patient complains of pain and paraesthesiae, it is essential to entertain a high index of suspicion of coexistence of compartment syndrome and carpal tunnel compression and safer to combine fasciotomies and carpal tunnel decompression with reduction of dislocations and stabilisation of carpus. We highlight the risk in an illustrative intoxicated patient with ipsilateral elbow and perilunate dislocation. We proceeded to forearm fasciotomies in conjunction with carpal tunnel decompression, which facilitated reduction of perilunate dislocation.

INTRODUCTION
Lunate and perilunate dislocations are uncommon and constitute 10% of carpal injuries. The reported incidence of missed initial diagnosis in perilunate dislocations is as high as 25%, which can rise steeply in case of an obvious concomitant elbow dislocation in high-energy trauma. We are reporting an extremely rare combination of concomitant ipsilateral elbow and perilunate dislocation, in effect a “floating forearm”.

CASE REPORT
A 30-year old man was brought by ambulance to the Accident Department on a Friday night with history suggestive of fall from a tree after alcoholic intoxication. He was seen by a passer-by to be climbing a tree earlier, but paramedics found him sitting on a bench in a park. The patient could not describe what happened. He complained of pain, swelling and deformity of the non-dominant left elbow. He had past history of depression, but denied taking any antidepressants currently.

He was conscious, but confused and was smelling of alcohol. He appeared intoxicated and comfortable. He had no evidence of external head injury and was haemodynamically stable. On examination of left elbow, there were marked swelling, tenderness and deformity with no obvious neurovascular symptoms or signs within the limitations of intoxication. Apart from superficial abrasions over left shin, he had no other apparent injuries. Radiographs of left elbow revealed posteromedial fracture-dislocation of elbow in association with a chip fracture from the radial head. The elbow dislocation was easily reduced in Accident unit and immobilised in an above elbow back slab. He was admitted for elevation of left arm and observation for any neurovascular problems.

On review in the morning, he was fully conscious, alert and appeared comfortable with no neurovascular symptoms or signs. By evening, about 21 hours after injury, he started complaining of pain in left forearm, wrist and hand and paraesthesia of fingers and was not happy to move fingers fully. On assessment out of back slab, he had diffuse swelling and tenderness of left elbow, forearm and wrist. He could not move the wrist and also had restriction of movements of fingers. Passive stretch of fingers was painful. Slight altered sensation was encountered in median nerve distribution. Radial and ulnar pulses were well- felt, capillary circulation was brisk and oxygen saturation in fingers was 96%. X-rays of left elbow, radius and ulna and wrist not merely confirmed reduction of fracture-dislocation of elbow with a chip fracture of the radial head, but also revealed dorsal perilunate dislocation with a chip fracture from radial styloid.
Because of clinical possibility of compartment syndrome and median nerve symptoms and signs, we proceeded to fasciotomies of forearm through volar and dorsal incisions together with carpal tunnel decompression. The muscles in all compartments were healthy. Closed reduction of perilunate dislocation was easy after carpal tunnel decompression and stabilisation was accomplished by transfixation with two Kirschner wires- one from scaphoid to radius and the other from trapezoid to lunate and then into radius. Elbow was found to be stable under fluoroscopic control. Fasciotomy wounds were left open and an above elbow back slab was applied. The arm was elevated and finger exercises were encouraged. Fasciotomy wounds were closed sequentially without any tension after two and five days respectively.

Wounds healed well in two weeks. He was immobilised in an above elbow back slab for three weeks, which was then converted to below elbow back slab to facilitate elbow movements and physiotherapy. Kirschner wires were removed from the wrist at six weeks. X rays of left elbow and wrist were satisfactory. Intensive physiotherapy was advised because of stiffness of elbow and wrist as well as restricted supination and pronation. Sensory status of median nerve remained unchanged, but there were no motor signs. The patient was lost to further follow-up and attempts to recall him by letters, telephone and Family Physician were unsuccessful.

DISCUSSION

“Floating forearm”- concomitant ipsilateral elbow and perilunate dislocation- is extremely rare. Chen, reported three cases of concurrent elbow and perilunate dislocation after falls on outstretched hand. Closed reduction of elbow...
dislocation resulted in excellent function in all cases. But
anatomical reduction of perilunate dislocation was only
achieved by open reduction and internal fixation in two
cases with satisfactory functional recovery. Delayed
diagnosis in the third case led to proximal row carpectomy
and moderate pain after exceptional efforts. Waaziz et al
added a further case report.

Masmejean and Cognet reported a case of bifocal
dislocation of forearm due to posterior dislocation of elbow
and transcapitocapitate retrolunate dislocation and fractures
of radius and ulna. Emergency intervention involved
reduction of elbow dislocation, plate osteosynthesis of radius
and ulna and further combined anterior and posterior
approaches for fixation of radial styloid, scaphoid and
capitate by temporary scapholunate, triquetrolunate,
scapholunate and radioluunate pinning. In a retrospective
review of 61 patients with perilunate dislocation and carpal
fracture-dislocation (FD), Lamas, Llusa and Mir
documented three cases of carpal fracture-dislocation in
association with elbow dislocation.

Herzberg et al. undertook a multicentre study of 166
perilunate dislocations and fracture-dislocations from seven
centres and found the incidence of perilunate fracture-
dislocation was twice more common than perilunate
dislocation. Displacement was dorsal in 161 (97%), 96% of
which were dorsal transscaphoid perilunate fracture-
dislocations. Open injury and delayed diagnosis adversely
influenced the results. And the diagnosis was initially missed
in a hefty 41 (25%) cases of isolated carpal injuries.

The spectrum of perilunate dislocation includes
transscaphoid-perilunate, perilunate, transcapitocapitate-
transcapitate-perilunate and trans-radial styloid in the order
of frequency. Mechanism of injury is stress loading of
carpus in hyperextension and ulnar deviation. The sequential
destabilisation starts through the body of scaphoid with
fracture or scapholunate interval with dissociation and
dislocation of the rest of carpus around lunate and proximal
scaphoid or lunate. Then the force transmits through the
space of Poirier between lunate and capitate with disruption
of lunotriquetral articulation, resulting in dislocation of
lunate into carpal tunnel. In trans-radial styloid perilunate
dislocation, fractured radial styloid and rest of the carpus
dislocates around lunate with further progressive sequential
destabilisation distal to lunate through the space of Poirier or
capitate with fracture or hamate and triquetrum or lunotriquetral interval.

Our patient represents an extremely rare illustrative case of
concomitant ipsilateral elbow and perilunate dislocation - a
“floating forearm”. The incidence of missed initial diagnosis
of perilunate dislocation, is as high as 25%, which increases
with an obvious elbow dislocation in high-energy trauma in
an intoxicated patient. It is imperative to entertain a high
index of suspicion of coexistence of compartment syndrome
and carpal tunnel compression in concomitant elbow and
perilunate dislocations. We consider it safer to combine
forearm fasciotomies with carpal tunnel decompression,
which facilitated easy reduction of perilunate dislocation and
stabilisation of carpus.

CORRESPONDENCE TO
Dr. Kodali Siva R K Prasad, MBBS Staff Grade Orthopaedic
Surgeon Prince Charles Hospital Merthyr Tydfil United
Kingdom CF47 9DT Tel: 0044 1685 721721 Fax: 0044 1685
728485 Email: kodaliprasad@doctors.org.uk;
Kodali.Prasad@nglam-tr.wales.nhs.uk

References
1. Chen WS. Concurrent perilunate dislocation in patients
with elbow dislocation: Case reports. Journal of Trauma-
2. Herzberg G, Comtet JJ, Linscheid RL. Perilunate
dislocations and fracture-dislocations: A multicenter study. J
Revista de Ortopedia y Traumatologia.2002; 46(3): 240-245.
4. Masmejean E, Cognet JM. Bifocal dislocation of the
forearm: Elbow and perilunate dislocation. Revue de
Chirurgie Orthopedique et Reparatrice de l Appareil
5. Waaziz A, Moujahid M, Bendriss A. The floating
forearm: Elbow and perilunate dislocation. Chirurgie de la
Concomitant Elbow and Perilunate Dislocation: Floating Forearm

Author Information

Kodali Siva R K Prasad, MBBS
Staff Grade Orthopaedic Surgeon, Prince Charles Hospital

B.K. Dayanandam, MRCS
Trust Grade Orthopaedic Surgeon, Prince Charles Hospital

H. Gakhar, MS, MRCS
Trust Grade Orthopaedic Surgeon, Prince Charles Hospital

U. Attarwala, FRCS
Consultant Orthopaedic Surgeon, Prince Charles Hospital

K. Karras, MD, FRCS
Consultant Orthopaedic Surgeon, Prince Charles Hospital