Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale (Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis

N Azu, R Onyeagba

Abstract
The antimicrobial properties of various extracts of Allium cepa (onions) and Zingiber officinale (ginger) against Escherichia coli, Salmonella typhi and Bacillus subtilis that are common cause of gastrointestinal tract infections were investigated using the cup-plate diffusion method. The result obtained revealed that ethanolic extract of ginger gave the widest zone of inhibition against two out of the three test organisms at the concentration of 0.8g/ml. However, Escherichia coli and Salmonella typhi were more sensitive to the extract of onion bulbs compared to Bacillus subtilis which was predominantly resistant. It was also observed that the solvent of extraction and its varying concentrations affected the sensitivity of two of the test organisms to the plant materials. The minimum inhibitory concentration (MIC) of ginger extracts on the test organisms ranged from 0.1g/ml - 0.2g/ml, showing that ginger was more effective and produced remarkable inhibitory effect on the two out of the three test organisms when compared to the onion extracts. This investigation indicates that, though both plants had antimicrobial activities on the two gram negative test organisms but not effective on the gram positive test organism, ginger had more inhibitory effect thus confirming their use in folk medicine.

INTRODUCTION
Medicinal plants may be defined as any plant that can be put to culinary or medicinal use and include those we associate with, orthodox drugs such as fox glove and opium poppy, as well as everyday plants, such as garlic. We shall not forget that all drugs of the past were substances with a particular therapeutic action extracted from plants. More and more researchers find that food and their individual constituents perform similar fashion to modern drugs and sometimes better without the dreaded side effects. The use of herbs and medicinal plants as the first medicines is a universal phenomenon. Every culture on earth, through written or oral tradition, has relied on the vast variety of natural chemistry found in healing plants for their therapeutic properties.

The onion is one of the oldest cultivated vegetables in history. It is thought that bulbs from the onion family have been utilized as a food source for Millennia. Onion consists of its herbaceous plant part and its edible bulb part. It is probably a native to southwestern Asia. The leaves are bluish-green and hollow. The bulbs are large, fleshy and firm. There are three main varieties: white, red and purple skinned. The relative pungency of onion has both genetic and environmental components. Sulphur compounds in onions have also been shown to be anti-inflammatory both by inhibiting formation of thromboxanes and by inhibiting the action of platelet-activating factor (PAF). Thiosulfinates condition anti-thrombotic benefits, including antioxidant activity, reduced serum cholesterol and enhance in vitro platelet activity. This later effect is important for cardiovascular health by reducing the probability that platelets aggregate in the blood, a major cause of heart attacks and strokes. Hence, thiosulphinates found in onion have been shown to inhibit in-vitro platelet aggregation.

Flavonoids are a second class of health enhancing compound produced by onions, an example is quercetin. Flavonoids are chemical compounds active against microorganisms. They have been found in-vitro to be effective antimicrobial substance against a wide array of microorganisms. Ginger, consists of the fresh or dried roots of Zingiber officinale. In humans, ginger is thought to act directly on the gastrointestinal system to reduce nausea. Traditionally, ginger has been used to treat intestinal infections, especially...
related with digestive problems. Equally, its antibacterial 'power' is effective against preventing numerous intestinal problems that take place as a result of the alteration of the intestinal flora. This is ideal to avoid the formation of ulcers by eliminating the Helicobacter pylori, a bacterium whose secretions of ammonia are responsible for many ulcers, especially those of the duodene, and for other stomach problems like gastritis, since the plant is able to neutralize the excess of gastric acid that is another of the causes that favours the formation of ulcers.

The gingerols have analgesic, sedative, antipyretic, antibacterial and gastrointestinal tract motility effects. Ginger has the capacity to eliminate harmful bacteria, such as Escherichia coli, responsible for most of the diarrhoea, especially in children. Ginger eases both diarrhoea and constipation; hence it should have impact on the growth of Bacillus cereus, which mainly causes diarrhoea and nausea. It has been shown to reduce the stickiness of blood platelets, hence may help reduce risk of artherosclerosis.

The genus Salmonella is among the most common causes of food and water born infectious diseases in the world. The organism has a wide host range which comprises most animal species including mammals, birds and cold-blooded animals in addition to human. A number of studies in Nigeria have shown that Salmonella infections is endemic in many parts of the country and its endemicity increases especially in areas with low environmental hygiene.

Bacillus subtilis has been implicated in various food spoilage including ropiness in bread, production of CO2 in canned meats, sliminess and coagulation in milk, etc.

Escherichia coli is one of the main causes of both nosocomial and community-acquired infections in humans and one of the micro-organisms most frequently isolated from blood. E. coli in humans is a common inhabitant of the gastrointestinal tract. It can also cause various intestinal and extra-intestinal diseases. The pathogenic isolates of E. coli have a relatively large potential for developing resistance. The spread of microbial drug resistance is a global public health challenge, which impairs the efficacy of antimicrobial agents and results in substantial increased illnesses and death rate, hence, this work was therefore undertaken to investigate as well as authenticate the antimicrobial potentials of the two medicinal plants.

MATERIALS AND METHODS

TEST ORGANISM CONFIRMATION

The test organisms Escherichia coli, Salmonella typhi and Bacillus subtilis isolated from febrile patients with gastrointestinal tract infection was collected from the Genetics and Molecular Biology Laboratory Unit of National Institute of Medical Research, Yaba, Lagos (NIMR). The pure cultures were subcultured on Nutrient Agar slants and preserved in the refrigerator at 4°C until required for the study.

COLLECTION AND IDENTIFICATION OF PLANT MATERIALS

The plant materials, onion bulbs (Allium cepa) and ginger (Zingiber officinale) were purchased from Abakpa main market Abakaliki. It was confirmed that the cultivation was in the Northern part of Nigeria, from where greater quantities were purchased by the sellers. The plants were identified by Prof. S.S. C. Onyekwelu (Taxonomist) of Applied Biology Department of Ebonyi State University, Abakaliki, Nigeria.

EXTRACTION OF THE PLANT MATERIALS

ONION EXTRACTION

1. Exactly 200g of fresh onion bulbs were blended into fine powder and soaked in 100mls of distilled water for 24hrs. The pulp obtained was left in a clean, sterile glass container and shaken vigorously to allow for proper extraction and it was filtered using a sterile muslin cloth after which the extract was obtained, air-dried and stored as in (1) above.

2. Exactly 200g of fresh onion bulbs were blended and soaked in 100mls of 95% ethanol for 24hrs and the extract was obtained, air-dried and stored as in (1) above.

3. Exactly 200g of fresh onion bulbs were blended and soaked in 100mls of hot water for 24hrs; the resultant juice was extracted, air-dried and stored as in (1) above.

4. Exactly 200g of fresh onion bulbs were blended into fine powder and soaked in 100mls of distilled water for 24hrs. The pulp obtained was left in a clean, sterile glass container and shaken vigorously to allow for proper extraction and it was filtered using a sterile muslin cloth after which the extract was obtained, air-dried and stored as in (1) above.
and the raw juice was extracted after standing in a clean glass container for 24hrs, it was extracted using a sterile muslin cloth and the extract was air-dried and stored as in (1) above.

GINGER EXTRACTION

The ginger rhizomes were washed with clean sterile distilled water and allowed to air-dry for one hour. Then the outer covering of the ginger were manually peeled off and the ginger was washed again and extracted using the following procedures:

1. Exactly 200g of fresh ginger were blended into fine powder and soaked in 100mls of distilled water for 24hrs. The pulp obtained was left in a clean, sterile glass container and shaken vigorously to allow for proper extraction and it was filtered using a sterile muslin cloth after which the extract was obtained, air-dried and stored below ambient temperature until required.

2. Exactly 200g of fresh ginger were blended and soaked in 100mls of hot water for 24hrs; the resultant juice was extracted, air-dried and stored as in (1) above.

3. Exactly 200g of fresh ginger were blended and soaked in 100mls of 95% ethanol for 24hrs and the extract was obtained, air-dried and stored as in (1) above.

4. Exactly 200g of fresh ginger were blended and the raw juice was extracted after standing in a clean glass container for 24hrs, it was extracted using a sterile muslin cloth and the extract was air-dried and stored as in (1) above.

PREPARATION OF MCFARLAND STANDARD

Exactly 0.5 McFarland equivalent turbidity standard was prepared by adding 0.6ml of 1% barium chloride solution (BaCl₂. 2H₂O) to 99.4ml of 1% sulphuric acid solution (H₂SO₄) and mixed thoroughly. A small volume of the turbid solution was transferred to capped tube of the same type that was used to prepare the test and control innocula. This was then stored in the dark at room temperature (25°C). Exactly 0.5 McFarland gives an equivalent approximate density of bacteria 1x10⁸ cfu₂₈.

INNOCULUM PREPARATION BY DIRECT COLONY SUSPENSION METHOD

A small volume of sterile water was poured inside a test tube to which general colonies of the test organisms, taken directly from the plate were emulsified and the suspension was adjusted to match the 0.5 McFarland's standard which has a similar appearance of an overnight broth culture by adding distilled water₃₀.

ANTIMICROBIAL SCREENING TEST

The sensitivity of the test organisms, Escherichia coli, Salmonella typhi and Bacillus subtilis to the extracts of Allium cepa (onions) and Zingiber officinale (ginger) were carried out using the cup-plate diffusion method as described by₃₀. A glass dropper was used to add 0.02mls of the suspension to an already prepared medium. A sterile cotton swab was used to spread by streaking the organisms all over the surface of the medium and allowed to dry for about 5 minutes. Cups of 6mm in diameter were made in the agar using sterile cork borer.

Different dilutions of the plant extracts prepared in the order of 0.1gm⁻¹, 0.2gm⁻¹, 0.4gm⁻¹, 0.6gm⁻¹ and 0.8gm⁻¹ respectively were prepared in five different test tubes and placed in a test tube rack. About 0.3gm⁻¹ of erythromycin was also prepared along side, which served as a positive control. Exactly 0.02ml of each concentration was introduced into each hole on the medium and was allowed to stand on the bench for about one hour for proper diffusion. It was thereafter incubated at 37°C for 24hrs. The sensitive bacteria grew everywhere except in areas around the holes in the medium. Then, the resulting inhibition zones obtained were measured in millimeters and recorded against the corresponding concentrations.

RESULTS

The results of the antimicrobial properties of the extracts on the test organisms are shown in tables below:
Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale (Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis

DISCUSSION

The result of this work indicates that the various soluble extracts of onions and ginger have antibacterial properties.
When the extracts were tested on Escherichia coli,
Salmonella typhi and Bacillus subtilis, the widest zones of
inhibition was obtained with Salmonella typhi followed by
Escherichia coli. These differences in the zones of inhibition
may be directly related to the susceptibility of each test
organisms to the onions and ginger extracts. The factors
responsible for this high susceptibility of Escherichia coli
and Salmonella typhi to the extracts are not exactly known
but may be attributed to the presence of secondary plant
metabolites. It was observed that the ethanolic extract of ginger gave the
widest zone of inhibition (20mm) using the concentration of
0.8g/ml while the ethanolic extract of onion gave 9mm with
0.8g/ml each against Salmonella typhi. This credit to
ethanol extraction was supposed to ethanol being an organic
solvent and will dissolve organic compounds better, hence
liberate the active component required for antimicrobial
activity.

It was clear from this work that the solvent of extraction
affected the degree of antibacterial activity of the extracts. It was
observed that the ethanolic extract of ginger gave the
widest zone of inhibition (20mm) using the concentration of
0.8g/ml while the ethanolic extract of onion gave 9mm with
0.8g/ml each against Salmonella typhi. This credit to
ethanol extraction was supposed to ethanol being an organic
solvent and will dissolve organic compounds better, hence
liberate the active component required for antimicrobial
activity. It was also observed that raw onion and ginger extracts had
activity only on Salmonella typhi and no effect on
Escherichia coli and Bacillus subtilis. The reason for this is
not clear because the raw juice is thought to be more
concentrated than the other extracts since the growth of
Escherichia coli and Bacillus subtilis was not inhibited at all.
The hot water extracts of onions did not inhibit the growth of
Salmonella typhi. This may be explained by the fact that the
antimicrobial substance in the onion extracts, which are
mainly phenolic compounds are destroyed by heat from the
hot-water which might have raised the temperature of the
extracts inactivating them. In general, antibacterial
components in the spice plants are heat-labile; hence all the
spices lost their antibacterial activities within 20minutes at
100°C. Since, the hot- water extract of ginger showed
activity on Salmonella typhi, the reason for this variation is
not very clear. The cold-water extract of onion did not
inhibit at all the growth of Escherichia coli and Bacillus
subtilis but inhibited Salmonella typhi at 0.8g/ml while the
cold-water extract of ginger inhibited both Escherichia coli
and Salmonella typhi at all concentrations. It could be said
that cold-water as an extractant could liberate the active
constituents of ginger better compared to onions. It was
similarly observed that the extracts inhibited the growth of the
two gram-negative test organisms Escherichia coli and
Salmonella typhi to a reasonable degree though not
completely but had no observable effect on the gram-
positive organism Bacillus subtilis, hence, the two
susceptible bacteria are responsible for various stomach
related illnesses such as typhoid fever, diarrhoea and
gastroenteritis.

It is worthy to note that the antimicrobial activities of these
plants extracts were dependent on the concentration of the
extracts as reported by. Also, if the extract has high
molecular weight, the rate of diffusion is always slow,
reduced and also takes longer time, whereas an extract of
low molecular weight diffuses faster and at a quicker rate.
The result obtained is evidence that Zingiber officinale
(ginger) produced marked inhibitory effect on the two test
organisms compared to Allium cepa (onions). Hence, it has
been reported that ginger extract and its pungent compounds
demonstrated greater antibacterial activity against a variety
of bacterial species including Helicobacter pylori,
Staphylococcus aureus, Pseudomonas aeruginosa and
Escherichia coli, although mixed result is attributed to
different ginger preparations and varying strength.

References
1. Serrentino J. How Natural Remedies Work. Point Robert,
2. Wainright M. Miracle cure: The story of penicillin and the
3. Ody P. The Complete Medicinal Herbs. Dorling
19:38 UTC, 2006: 1-5
6. Ying MC, Chang, WS. Antioxidant activity of general
Allium members. J Agri
7. Goldman IL, Schwarz BS, Kopelberg M. Variability in
blood platelet inhibitory
activity of Allium (Alliaceae) species accessions. Am Y Bot
Perspectives
in New Crops and New Uses. ASHS Press, Alexandria, VA,
1999: 374-378
9. Moritsau Y, Morioka Y, Kawakishi S. Inhibitors of
platelet aggregation generated
by mixtures of Allium species and / or S-alk(ene) nyl-L-
cysteine sulfoxides.
10. Briggs WH, Goldman IL. Variation in economically and
ecologically important
trait in onion plant organs during reproductive development.
Plant Cell
11. Ekwenye UN, Elegalam NN. Antibacterial activity of
ginger (Zingiber officinale)
Roscoe) and garlic (Allium sativum
L.) extracts on Escherichia coli and
Salmonella typhi. Journal of Molecular Medicine
and Advanced Science
12. Yamahara I. Gastrointestinal motility enhancing effect of
ginger and its active
13. Wood CD. Comparison of efficacy of ginger with
various antimicrobial sickness
drugs. Clinical Research Practices and Drug Regulatory
Affairs 1988;6(2):
129 - 136.
15. Baird-Parker AC. Food borne Salmonellosis. Lancet
1990; 336: 1231-1478.
Nigerian Med Pract 2000
3: 3-6.
17. Onunkwo AU, Nwankwo CH, Umolu DN. Stochastic
appraisal of
the routine serodiagnostic method for enteric fever in
Nigeria. Sci Eng Tech
2001; 8 :2964-2973.
18. Mara DD, Caincross S. Guidelines for safe use of
wastewater and excreta in
agriculture and aquaculture. Geneva. World Health
Organization and United
Salmonella in broiler chicks.
20. Chen HC, Chang MD, Chang, T.J. Antibacterial
properties of some spice plants
before and after heat treatment. Pubmed 1985;18(3):
190-195.
of Salmonella in commercial broiler hatchery in Awka,
Nigeria. Nigerian
Journal of Microbiology 2006; 20(2) : 911-916.
22. Frazier, W.C. and Westhoff, D.C. Food Microbiology.
3rd edition. Tata McGraw
23. Donnenberg MS. Escherichia coli: virulence mechanisms of
a versatile pathogen.
24. Williams RJ, Heymann DL. Containment of
antimicrobial resistance. Science
25. Lark RL, Saint S, Chenoweth C, Zemencuk JK, Lipsky
BA, Plorde JJ. Four-year
prospective evaluation of community-acquired
bacteremia/epidemiology,
microbiology and patient outcome. Diagn Microbiol Infect
26. Byarygaba DK. A review on antimicrobial resistance in
developing countries and
responsible risk factors. Int J Antimicrob Agents 2004;24:
105-110.
27. World Health Organization. Global strategy for
containment of antimicrobial
28. Chessbrough M. District Laboratory Practice in Tropical
Countries. Part 2.
Cambridge University Press, United Kingdom, 2000: 222.
29. Isu NR, Onyeagba RA. Basic Practicals in Microbiology.
2nd edition. Fasmen
Tests for sensitivity to
antimicrobial agents. In: Medical Microbiology,12th edition. Churchill
Livingstone, Edinburgh, 1975: 190-204.
31. Nweze EI, Okafor JJ, Njoku O. Antimicrobial Activities
of Methanolic extracts
of Trema guineesis (Schumm and Thorn) and Morinda
lucida Benth used
in Nigerian Herbal Medicinal Practice. Journal of Biological
Research
and Biotechnology 2004; 2(1) : 39-46.
Monitoring hygiene of chicken
Immunol Infect
33. Adam MR, Moss MO. sFood Microbiology. The Royal
Society of Chemistry,
34. Chrubasik S, Pittler M, Rougogalis B. Zingiberis
rhizome: a comprehensive
review of ginger effect and efficiency profiles. Phytomed
Author Information

Nelson C. Azu, M.Sc.
Department of Applied Microbiology, Ebonyi State University

Reginald A. Onyeagba, Ph.D.
Department of Microbiology, Abia State University