Hyperammonemia: Diagnostic Experience At The Metabolism Laboratory

A Rao, P Varma, Sumitra, S Dhanya

Citation

Abstract
Context: Ammonia is produced normally from the catabolism of amino acids through the urea cycle occurring in the hepatocytes. At concentrations > 60 uM/L, clinical signs of Hyperammonemia are seen in children, which are manifested as lethargy, vomiting, and can progress to coma & death. Common causes of Hyperammonemia include Urea cycle defects, Organic acidemias or hepatic dysfunction.

Aim: To evaluate amino acid and organic acid profiles of Hyperammonemia (> 80uM/L) cases using High Performance Liquid Chromatography (HPLC) & to diagnose the underlying metabolic disorder, if any.

Setting: All cases of Hyperammonemia referred to Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences, Kochi from May 2003 were considered.

Materials: HPLC was used for quantitation of amino acids and organic acids. Amino acids were quantitated using Phenylisothiocyanate method & organic acids on C18 column with UV detection.

Results & Statistics: Of a total of 171 referrals, 78 cases were neonatal presentations. 42 were infants and 51 cases were > 1 year of age. 76% of the cases (130 cases) were diagnosed to have some sort of metabolic disorder. 29% cases were due to Urea cycle defects. While 27% & 24% respectively were contributed by Propionic acidemia & Methylmalonic acidemia, 9% were due to Pyruvate metabolism defects. Multiple carboxylase defects, Branched Organic acid defects, Lysinuric protein intolerance & Hypervalinemia together made up 9%. 41 cases which were inconclusive even after amino acid and organic acid HPLC could probably have been diagnosed with mutation analysis.

Conclusion: The data shows that these disorders are not uncommon, but are presented as encephalitis, cerebral palsy, epilepsy etc. Clinicians should thus be aware of the various manifestations of these disorders. Estimation of ammonia levels is the first step towards diagnosis.

INTRODUCTION
Ammonia, normally produced from catabolism of amino acids, is a potentially lethal neurotoxin. The conversion of ammonium to urea, which involves urea cycle, occurs in the mitochondrial and cytosolic compartment of hepatocytes. Urea, which contains two nitrogen atoms, is synthesized from aspartate and ammonium mobilized from various sources as detailed above. The urea cycle, also called Krebs-Henseleit cycle, typically involves six enzymatic reactions. The first 3 steps occur in the mitochondria and the next 3 steps occur in the cytoplasm. 1, 2

The concentration of free ammonia in blood is very tightly regulated and is exceeded by two orders of magnitude by its physiologic derivative, urea. The normal capacity for urea production far exceeds the rate of free ammonia production by protein catabolism under normal circumstances, such that any increase in free blood ammonia concentration is a reflection of impairment of urea cycle function or fairly extensive hepatic damage. 1 Clinical signs of hyperammonemia occur at concentrations > 60 micro mol/L and include anorexia, irritability, lethargy, vomiting, somnolence, disorientation, asterixis, cerebral edema, coma, and death; appearance of these findings is generally proportional to free ammonia concentration, is progressive, and is independent of the primary etiology. Common causes
of hyperammonemia include genetic defects in the urea cycle, organic acidemias ("secondary urea cycle dysfunction"), as well as genetic or acquired disorders resulting in significant hepatic dysfunction. Hyperammonemia occurs commonly due to defective detoxification in the liver due to a variety of inborn errors of metabolism and rarely due to excess production in kidneys and intestine. Acute and chronic liver disease resulting in hyperammonemia are also known. Table-1 lists some of the well-recognized causes of hyperammonemia.

Figure 1

Table 1: Causes of hyperammonemia

Enzyme deficiencies of all the five classical urea cycle enzymes	Organic Acids
Carbamyl phosphate synthetase (CPS)	Propionic acidemia
Ornithine transcarbamylase (OTC)	Methylmalonic acidemia
Argininosuccinic acid synthetase (AS)	Isocitric acidemia
Argininosuccinase (AS)	Ketohexohisase deficiency
Arginase	Multiple carbonase deficiency
N-acetyl glutamate synthetase (NAGS)	Glutaric acidemia-type II
	3-hydroxy, 3-methylglutaric acidemia
	Other rare organic acidemias
Others inborn errors	Lysinuric protein intolerance
Hyperammonemia-Hyperornithinemia-homocitrullinuria syndrome (HHH)	Periodic hyperammonia with hyperornithinemia
Hypervalinemia	Transient hyperammonemia of newborn

Figure 2

Table 2: Age wise distribution of referrals

<table>
<thead>
<tr>
<th>TYPE</th>
<th>NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEONATAL PRESENTATIONS <28 days</td>
<td>78</td>
</tr>
<tr>
<td>BETWEEN 1month -1 year</td>
<td>42</td>
</tr>
<tr>
<td>FROM 1year-5 years</td>
<td>36</td>
</tr>
<tr>
<td>FROM 5 years OR ABOVE</td>
<td>15</td>
</tr>
</tbody>
</table>

METHODS

We have used High Performance Liquid Chromatography (HPLC, Shimadzu LC 10 AT VP) with a Diode array detector (SPD M10 AVP) for quantitations of aminoacids & organic acids. Aminoacids were quantitated using the Phenylisothiocyanate method (PICOTAG) from Waters Corporation. Organic acids were quantitated on the HPLC using a C-18 (150x4.6mm, particle size 5µm) column; mobile phase of 99:1 potassium phosphate buffer (pH 2.5, 50mM): acetonitrile. Flow rate was set of 1.5 ml/minute and detection was at 210nm. All cases of hyperammonemia (>80 micromole/liter) referred to the Metabolic Disorders Laboratory from May 2003 were evaluated for their aminoacid and organic acid profiles. The distribution of the patients age-wise is shown in Table 2.

RESULTS

Results by summation of all cases are presented in Table-3.
DISCUSSION

Disorders causing hyperammonemia constitute an important group of potentially treatable metabolic disorders manifesting predominantly with neurological manifestations in early life. Thus, because of the neurotoxic implications of hyperammonemia and the typical absence of other specific laboratory abnormalities, appearance of clinical signs compatible with hyperammonemia should initiate an emergent search for elevated blood ammonia concentration. A value of more than 150 mµol/L (260 µg/dl) in infants and more than 100 µmol/L (175 µg/dl) in older children and adults warrants further biochemical investigations. Though the plasma concentration of ammonia in a symptomatic child is usually 3 or more fold elevated, lower levels can produce symptoms and rarely, raised glutamine alone without hyperammonemia can occur as the biochemical marker of urea cycle dysfunction. After confirming hyperammonemia, the first step is to look at serum bicarbonate, sodium, chloride and urine ketones. Acidosis usually indicates the possibility of organic acidemias whereas urea cycle disorders often present with respiratory alkalosis. If acidosis is absent (respiratory alkalosis is often present), the second step is to look at the concentrations of amino acids in blood and urine. Diagnostic criteria & cutoff values for aminoacid concentrations in plasma are well established. If the amino acid profile is non-diagnostic, the third step is to look for urine orotic acid. This can be done as part of organic acid analysis or as specific assay for orotic acid. Orotic aciduria is found in patients with OTC deficiency. In a patient without a diagnostic amino acid profile and without orotic aciduria, the usual diagnosis is CPS deficiency. NAGS deficiency closely resembles CPS deficiency, but is very rare. Transient hyperammonemia of the newborn also has similar features but is much rare in the last two decades for unknown reasons. Citrulline levels are absent or present in trace in CPS and NAGS deficiencies whereas in transient hyperammonemia of newborn, it is mildly elevated. Low citrulline levels can be viewed as a marker for mitochondrial urea cycle enzyme deficiencies, namely OTC, CPS and NAGS.

Despite all these investigations, the diagnosis may remain inconclusive especially in patients with episodic symptoms. A re-evaluation during a crisis may possibly yield a diagnosis. We presume the forty-one inconclusive cases are in this category. A genomic / mutation analysis could have probably yielded the diagnosis. As evident from the data showed, these disorders are not uncommon and they masquerade as common disorders like encephalitis, cerebral palsy and epilepsy. Clinicians should be aware of the various manifestations of these disorders. High index of suspicion and estimation of ammonia levels in appropriate clinical setting is the first step towards the diagnosis. A comprehensive biochemical evaluation should follow to arrive at the final diagnosis. Though a variety of therapeutic options are available, the developmental outcome is not optimal in majority of cases. Late onset cases with episodic symptoms have better prognosis. Early diagnosis and strict regulation of nitrogen metabolism is crucial in improving the outcome.

ACKNOWLEDGMENTS
We wish to thank Dr. Ahsan Moosa, Amrita Institute of Medical Sciences, Cochin for his contributions in the text & the Departments of Neurology, Pediatrics & Neonatology, Amrita Institute of Medical Sciences, Cochin for their clinical referrals.

CORRESPONDENCE TO

Dr. Ananth N Rao, M Chief, Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences, Kochi 682
References

Author Information
Ananth N. Rao, Ph.D.
Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences

Parvati Varma, M.Sc.
Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences

Sumitra, M.Sc.
Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences

S. Dhanya, M.Sc.
Metabolic Disorders Laboratory, Amrita Institute of Medical Sciences