Anti-diabetic activity of ethanolic extract of Holostemma ada Kodien Schults in alloxan induced diabetic rats

Y Janapati, R Ahemad, K Jayaveera, R Reddy

Citation

Abstract

Object: To evaluate antidiabetic activity of ethanolic extract of Holostemma ada Kodien Schults (EEHK) in normal, glucose fed, alloxan-induced diabetic rats and to perform phytochemical and toxicity studies. Material and Methods: The alcoholic extract of Holostemma ada Kodien (Asclepiadaceae) was studied for antidiabetic activity in normal, glucose fed and alloxan-induced diabetic rats by oral administration of extract (200 and 400 mg/kg body wt) for 7 days. The effect was compared with 0.5 mg/kg (i.p) glibenclamide. Results: The alcoholic extract of Holostemma ada Kodien significantly lowered the blood sugar of hyperglycemic rats. From toxicity study it was observed that EEHK was non toxic upto 5 g/kg body weight and phytochemical studies shows the presence of alkaloids, flavonoids, flavanones, tannins, terpenoids, amino acids and carbohydrates. Conclusion: The results justified the traditional use in the treatment of diabetes.

INTRODUCTION

Diabetes mellitus (DM) is considered to be one of the most serious endocrine syndrome. In many countries it is traditional to use plants to control diabetes. The anti hyperglycemic effect of several plant extracts which were used as antidiabetic remedies has been confirmed. The synthetic hypoglycemic agents used in clinical practices have serious side effects like hematomal effects, coma, disturbs the functions of liver and kidney. In addition they are not suitable for use during pregnancy. Compared with synthetic drugs, drugs derived from plants are frequently considered to be less toxic with fewer side effects. Therefore, the search for more effective and safer antidiabetic agent has become an area of active research.

Holostemma ada Kodien, important medicinal plant belonging to family Asclepiadaceae and widely distributed in tropical forest in India. The plant is used as antidiabetic, rejuvenative, aphrodisiac, expectorant, galactogogue, stimulant, and in ophthalmic disorders. There is huge demand for this plant; more than 150 tonnes is required every year in south Indian pharmacies. However no scientific study on anti diabetic activity of this plant has been reported. The present investigation was undertaken to study the anti diabetic activity of Holostemma ada Kodien in alloxan induced diabetic rats.

MATERIALS AND METHODS

PLANT MATERIAL

Fresh leaves were collected from S.V.U campus, Tirumala gardens of Chittor district of Andhra Pradesh of India and authentified by Asst.Prof.Dr.K.Madhava Chetty of the Department of Botany, S.V.University, and Tirupathi. A.P. A voucher specimen [No.HAK1/PRRMCP 06-11] was deposited at Department of Pharmacognosy for further reference.

EXTRACTION

The leaves, shade dried, powdered in a grinder mixer to obtain a coarse powder and then passed through 40 mesh sieve. The powdered leaves (430gms) were defatted with hexane and later extracted (soxhlet) using alcohol. The extract evaporated to dryness, gave a residue 15.5%w/w. Phytochemical screening were performed.

ANIMALS

Albino wistar rats of either sex weighing (200-250gms) were employed for study. They were housed in standard environmental conditions and fed with standard rodent diet with water ad libitum. Ethical clearance for animal study was obtained from institutional animal ethical committee. (IAEC/PRRMCP/2006/07).
TOXICITY STUDY

An acute toxicity study was performed to determine the LD$_{50}$ using different doses of the extract according to the method described by Ghosh et al.

EFFECTS OF EEEHK ON BLOOD GLUCOSE LEVELS IN NORMOGLYCEMIC RATS

Animals were divided into three groups of six rats in each group. Group-1: Animals received 1% SCMC 2 ml/kg body wt. per orally. Group-2: Animals received EEEHK 200 mg/kg body wt. per orally. Group-3: Animals received EEEHK 400 mg/kg body wt. per orally.

In this study the entire groups of animals were fasted over night and administered with respective drugs as per the above mentioned dosage schedule. Blood glucose levels were determined at 0 (before drug challenge) 60, 120 min, after drug administration.

EFFECT OF EEEHK ON BLOOD GLUCOSE LEVEL ON GLUCOSE FED HYPERGLYCEMIC RATS (ORAL GLUCOSE TOLERANCE TEST)

The animals were divided into four groups of six rats each group. Group-1: Animals received glucose at a dose 2 gm/kg body wt. per orally. Group-2: Animals received glibenclamide 0.5 mg/kg body wt. and glucose Solution at a dose 2 gm/kg body wt. per orally. Group-3: Animals received EEEHK 200 mg/kg body wt. and glucose Solution at a dose 2 gm/kg body wt. per orally. Group-4: Animals received EEEHK 400 mg/kg body wt. and glucose Solution at a dose 2 gm/kg body wt. per orally. In this study, the entire group of animals were fasted and treated with above dosage schedule orally. The EEEHK 200 mg/kg, 400 mg/kg and 0.5 mg/kg glibenclamide were administered half an hour before administration of glucose solution. Blood glucose levels were determined at 0 (before glucose challenge) 30, 60, 90, 120th mins after glucose administration.

EFFECT OF EEEHK ON BLOOD GLUCOSE LEVEL IN ALLOXAN INDUCED DIABETIC RATS

Different groups of rats were used to study the effects of EEEHK. The rats were divided into five groups each consisting of six rats. Group-1: Normal control animals received 1% SCMC 2 ml/kg body wt. per orally. Group-2: Alloxan (150 mg/kg body wt.) induced diabetic animals received 1% SCMC 2 ml/kg body wt. per orally. Group-3: Alloxan (150 mg/kg body wt.) induced diabetic animals received glibenclamide 0.5 mg/kg, body wt. per orally. Group-4: Alloxan (150 mg/kg body wt.) induced diabetic animals received EEEHK 200 mg/kg body wt. per orally. Group-5: Alloxan (150 mg/kg body wt.) induced diabetic animals received EEEHK 400 mg/kg body wt. per orally.

In this study all the surviving diabetic animals and normal animals were fasted over night. Blood samples were collected from the fasted animals prior to the treatment with above schedule and after administration at each day up to 7 days. For glucose determination, blood was obtained by snipping tail with sharp razor using Haemo-Glukotest (20-800R) glucose strips supplied by M/s Boehringer Mannheim India Ltd. This method, which permits the measurement of blood glucose levels with minimum injury to rat, was previously validated by comparison with glucose oxidase method.

STATISTICAL ANALYSIS

All values were expressed as mean ± SEM. The data were statistically analysed by ANOVA followed by Dunne’s ‘t’ test.

RESULTS

PHYTOCHEMICAL AND TOXICITY STUDIES

Phytochemical screening gave positive results for alkaloids, flavonoids, flavanones, tannins, terpenoids, amino acids and carbohydrates. In toxicology study it was observed that extract is non toxic upto 5 g/kg body weight.

EFFECTS OF EEEHK ON BLOOD GLUCOSE LEVELS IN NORMOGLYCEMIC RATS

At dose 200 mg/kg and 400 mg/kg of EEEHK in fasting rats, blood sugars level were assessed in normal rats at various time intervals. The results were shown in Table-1. The mean blood glucose level maintained at 83.00 mg/dl at dose of 200 mg/kg body weight of EEEHK and decreased from 88.60 mg/dl to 84.00 mg/dl at dose of 400 mg/kg body weight in rats treated with EEEHK.

Figure 1

Table – 1 Effect of EETC on Blood glucose in normoglycemic rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Blood glucose levels (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
</tr>
<tr>
<td>I</td>
<td>86.00 ± 0.57</td>
</tr>
<tr>
<td>II</td>
<td>83.50 ± 0.57</td>
</tr>
<tr>
<td>III</td>
<td>88.60 ± 0.88</td>
</tr>
</tbody>
</table>

The values are expressed as mean ± SEM. n = 6 number of animals in each group.

Effect of EEEHK on blood glucose level on glucose fed
Anti-diabetic activity of ethanolic extract of Holostemma ada Kodien Schults in alloxan induced diabetic rats

At dose 200 mg/kg and 400 mg/kg of EEHK blood sugars level were assessed in glucose fed rats at various time intervals. The results were shown in Table-2. The mean blood glucose level decrease from 88.33 mg/dl to 86.17 mg/dl at dose of 200 mg/kg body weight of EEHK and 90.67 mg/dl to 85.44 mg/dl at dose of 400 mg/kg body weight in rats treated with EEHK, which is comparable to standard drug administration which shows reduction of mean blood glucose level from 86.16 mg/dl to 80.67 mg/dl.

Figure 2

Table – 2 Effect of EETC on Blood glucose in glucose fed hyperglycemic normal rats (oral glucose tolerance test):

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucose levels (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Day</td>
</tr>
<tr>
<td>I</td>
<td>85.00 ± 0.00</td>
</tr>
<tr>
<td>II</td>
<td>216.60 ± 2.55</td>
</tr>
<tr>
<td>III</td>
<td>213.00 ± 2.15</td>
</tr>
<tr>
<td>IV</td>
<td>207.36 ± 1.70</td>
</tr>
<tr>
<td>V</td>
<td>212.83 ± 2.20</td>
</tr>
</tbody>
</table>

EFFECT OF EEHK ON BLOOD GLUCOSE LEVEL IN ALLOXAN INDUCED DIABETIC RATS

The antihyperglycemic effect of the extracts on the blood sugar level on diabetic rats is shown in Table-3. The blood glucose level of diabetic animals significantly reduced from 207.30 mg/dl to 105.10 mg/dl at 200 mg/kg body wt. of EEHK and 212.83 mg/dl to 89.16 mg/dl at 400mg/kg body wt. of EEHK. These results were comparable with 0.5mg/kg of glibenclamide which shows significant reduction from 213.00 mg/dl to 86.16 mg/dl on 7th day.

DISCUSSION

In the recent times many traditionally used medicinally important plants were tested for their anti-diabetic potential by various investigators in experimental animals. These properties were attributed to different formulations, extracts and active principles. Working on the same line, we have undertaken a study on Holostemma ada Kodien for its anti-diabetic property.

Preliminary phytochemical analysis of the ethanolic extract of the Holostemma ada Kodien showed that the plant has a rich possession of phytochemicals like alkaloids, flavonoids, flavanones, tannins, terpenoids, amino acids and carbohydrates. Acute oral toxicity studies revealed the nontoxic nature of the ethanolic extract of Holostemma ada Kodien. Neither lethality nor any profound toxic reactions was observed at a dose of 5000 mg/kg body wt. This indirectly pronounces the safety profile on the plant extract.

The ethanolic extract at a dose of 200 mg/kg body wt. per orally did not significantly suppress blood glucose levels in over night fasted normoglycemic animals. The same effect was observed at a higher dose of 400 mg/kg body wt. per orally of the EEHK in over night fasted normoglycemic animals after 1" and 2" hour of oral administration, when compared with control group of animals.

The ethanol extract showed significant improvement in glucose tolerance in glucose fed hyperglycemic normal rats. Such an effect may be accounted for, in part, by a decrease in the rate of intestinal glucose absorption, achieved by an extra pancreatic action including the stimulation of peripheral glucose utilization or enhancing glycolytic and
glycogenic process with concomitant decrease in
glycogenolysis and glycogenesis. However the effect
was less significant when compared to standard drug
glibenclamide.

Alloxan is the most commonly employed agent for the
induction of experimental diabetic animal models of human
insulin-dependent diabetes mellitus. There is increasing
evidence that alloxan causes diabetes by rapid depletion of β
 cells, by DNA alkylation and accumulation of cytotoxic free
radicals that is suggested to result from initial islet
inflammation, followed by infiltration of activated
macrophages and lymphocyte in the inflammatory focus. It
leads to a reduction in insulin release, thereby a drastic
reduction in plasma insulin concentration leading to stable
hyperglycemic state. In this study significant
hyperglycemia was achieved within 48 hours after Alloxan
(150 mg/kg body wt. i.p.) injection. Alloxan induced
diabetic rats with more than 200 mg/dl of blood glucose
were considered to be diabetic and used for the study.

The studies on antidiabetic activity in alloxanised rats
showed significant reduction of blood glucose level from the
4th day of the study. The comparable effect of the extract
with glibenclamide may suggest similar mode of action,
since alloxan permanently destroys the pancreatic β cells and the extract lowered blood sugar level in alloxanised rats,
indicating that the extract possesses extra pancreatic effects
. From the phytochemical analysis it was found that the
major chemical constituents of the extract were flavonoids
and tannins. Over 150 plant extracts some of the active
principle including flavonoids are known to be used for the
treatment of diabetes .

On the basis of the above
evidences it is possible that the presence of flavonoids and
tannins are responsible for the observed anti diabetic activity

CORRESPONDENCE TO

Yasodha Krishna Janapati, M.Pharm,
Department of Pharmaceutical Chemistry,
P.Rami Reddy Memorial College of Pharmacy,
Kadapa, India.
Email: Krishna.yasodha@gmail.com,
Ph No: +919703282867.

References

1. Grover JK, Yadav S, Vats V. Medicinal plants of India
2. Grover JK, Yadav SP. Pharmacological actions and
potential uses of momordi charantia: a review. J

Antidiabetic activity of ethanolic extract of Holostemma ada Kodien Schults in alloxan induced diabetic rats

Phytother Res 2004; 93:123.
al. The rediscovery of ancient Chinese herbal formulas.

4. Platel K, Srinivasan K. Plant foods in the management of
diabetes mellitus: vegetables as potential hypoglycemic
agents. Nahrungen 1997; 41:68.
effects of three extracts from momordi charantia. J

6. Pari L, Ramakrishna R, Venkateswaran S. Anti
hyperglycemic effects of diamed, a herbal formulation in
experimental diabetes in rats J Pharm Pharmacol 2001;
53:1139.
7. Kar A, Choudhary BK, Bandypadhyay NG. Comparative
evaluation of hyperglycemic activity of Indian medicinal
84:1435.
8. Babu PS, Stanely Mainzen Prince P. Anti hyperglycemic
and anti oxidant effects of hyponiad, an ayurvedic
herbomineral formulation in streptozocin induced diabetic
9. Larmer J. insulin and oral hypoglycemic drugs, glucogan
The pharmacological basis of therapeutics . 7th Edition
10. Moming A. role of indigenous medicine in primary
health care. Proceeding of first international seminar on
unani medicine; 1987. New Delhi, 54.
Pharmacognosy, University of Kerala, Trivandrum
12. Sivarajan VV, Balachandran I. Ayurvedic drugs and
Delhi 1994:195
13. Madhava CK, Sivaji K, Tulasi rao. Flowering plants of
Chittor district – Andhra Pradesh, India, 1st ed. Students
offset printers, Tirupathi 2008:33.
14. Warrier PK, Nambiar VPK, Ramkan RC. Indian
medicinal plants: A compendium of 500 species. Orient
15. Karmarkar SH, Keshavachandran R, Augustin A.
Biochemical evaluation of root tubers and in vitro induced
callus of Adapathiyan (Holostemma ada Koiden K. Schum).
J of Tropical Agriculture 2001; 39; 108.
17. Ghosh MN. Fundamental of experimental Pharmacology
15. Aydin E, Fahrettin K, Hulusi A, Huseyin U, Yalcin T,
Muzaffer U. Hypoglycemic effect of Zizyphus jujube
19. Jayakar B, Suresh B. Antihyperglycemic and
hypoglycemic effect of Apora
indleyana in normal and alloxan induced diabetic rats.
20. Porchezhian E, Ansari SH, Shreedharan NKK,
Antihyperglycemic activity of
21. Saunders WB, Trapp GR. Basic and clinical biostatistics,
 mechanism of action. Acta
Diabetologica 1997; 34:239.
23. Szkudelski T. The mechanism of alloxan and
streptozotocin action in B-cells of the
Author Information

Yasodha Krishna Janapati, MPharm
Department of Pharmaceutical Chemistry, P.Rami Reddy Memorial College of Pharmacy, Kadapa, India.

Rasheed Ahemad, M.Pharm
Department of Pharmacology, Nizam Institute of Pharmacy, Hyderabad, India.

KN Jayaveera, PhD
Director, O.T.R.I. J.N.T.U. Anantapur, India

Ravindra Reddy, PhD
Principal, P.Rami Reddy Memorial College of Pharmacy Kadapa, India.