Flurbiprofen Axetil For Prevention Of Propofol Injection Pain In Adult --- A Systematic Review
Y Sun, T Li, F Chai, T Gan

Abstract

Abstract: Purpose: This review evaluates the efficacy of flurbiprofen axetil for preventing pain on injection of propofol. Methods: The following databases were searched including Medline (1966-2009), EMBASE (1990-2009), CINAHL, The Cochrane Central Register of Controlled Trials, and Scopus for randomized controlled trials assessing flurbiprofen axetil intervention for propofol induced injection pain. Trials were included where adults were randomized to receive flurbiprofen axetil or control including placebo, no treatment, or other pharmacologic intervention. Data were abstracted on the incidence and severity of pain at the propofol injection site. Adverse effects related to flurbiprofen axetil were also extracted. Combined data were analyzed using a random effects model. Results: Ten clinical trials were included. The incidence of patients without pain was significantly higher in flurbiprofen axetil group compared with no treatment control or placebo control (Risk Ratio [RR]: 3.46, 95% CI: 2.18, 5.49) with number needed to treat (NNT) of 2.6. The NNT for the incidence of patients without pain was 2.5, 2.1 and 5.0 in flurbiprofen axetil 50 mg pretreatment without venous occlusion, flurbiprofen axetil 50 mg preceded by venous occlusion, and flurbiprofen axetil 25mg preceded by venous occlusion group, respectively. The incidence of moderate or severe pain was also significantly lower in patients receiving flurbiprofen axetil intervention compared with no treatment control (RR: 0.41, 95% CI: 0.31, 0.56).Conclusion: Flurbiprofen axetil reduces the incidence and severity of propofol induced injection pain.

INTRODUCTION

Propofol remains the most common induction drug for general anesthesia because of its unique properties.1 However, propofol injection pain represents a clinical problem with incidence of 30-90% ranking seventh among 33 low morbidity clinical outcomes.2

A numbers of approaches have been proposed to attenuate the incidence and severity of this complication with varying degree of success. Pharmacological methods have been reported to be effective in preventing the pain induced by propofol injection.3-6 Flurbiprofen axetil, an injectable prodrug of flurbiprofen, has been used clinically for postoperative pain management as nonsteroidal anti-inflammatory drugs (NSAIDs).7 Several studies have been reported on the efficacy of intravenous administration of flurbiprofen axetil in reducing pain of propofol injection with contrasting results. The primary objective of this systematic review is to evaluate the efficacy of flurbiprofen axetil to prevent pain associated with propofol injection.

MATERIALS AND METHODS

Published reports of clinical trials evaluating flurbiprofen axetil to prevent pain on injection of propofol were sought according to QUORUM guidelines.8 Medline (1966-2010), EMBASE (1990-2009), CINAHL, The Cochrane Central Register of Controlled Trials, and Scopus were searched without language restriction. Free text and MeSH terms ‘flurbiprofen’, ‘flurbiprofen axetil’, ‘propofol’, ‘injection’, ‘pain’, and ‘complication’ were used in the search strategy. The bibliographies of these retrieved trials and database such as China hospital knowledge database (CHKD) were also searched for additional trials. The last manuscript search was in September 2010. Abstracts of matching studies were screened by two independent reviewers (Y.S and F.C). Relevant articles were obtained in full text for further review. We excluded data from letters, abstracts, case reports, experimental studies, or review articles.

SELECTION CRITERIA:

Randomized controlled trials (RCTs) of intravenous administration of flurbiprofen axetil for preventing pain of propofol injection in adults (age >18) were included. Trials
which reported relevant pain outcomes including pain score
and incidence of pain were included. We excluded trials
where only different strategies of flurbiprofen axetil
administration were compared without a control group.

VALIDITY ASSESSMENT
All included trials were assessed by two independent
reviewers (Y.S and F.C) using modified Oxford Scale.9
Discrepancies were resolved by consultation or by
discussion with third reviewer (T.L). The minimum score of
an included trial was 1, and maximum score was 6.

DATA ABSTRACTION
The following data points were extracted by two
independent reviewers (Y.S and F.C) including flurbiprofen
axetil intervention, group studied, number of patients, nature
of the control group, site and size of vein cannulation,
dosage of propofol, and flurbiprofen axetil related side
effects. Dichotomous data such as incidence of patients with
moderate or severe pain defined by pain score over 1 was
abstracted. The incidence of patients without pain was also
extracted. When the trial tested two or more intravenous
techniques of flurbiprofen axetil administration, we
combined the data to a single pair comparison. If the trial did
not report appropriate data, we contacted authors on repeated
occasions. The trial was not considered if the author did not
respond adequately to our demand.

META-ANALYSIS
Dichotomous data were analyzed using risk ratio with 95%
confidence interval (CI). If 95% CI around the RR did not
include 1.0, it was interpreted that the difference between
flurbiprofen axetil and the control group was statistically
significant. For the incidence of patients without pain,
relative risk ratio was calculated.[3] The number needed to
treat (NNT) was also calculated to estimate the clinical
impact of beneficial intervention according to the incidence
of patients without pain. Continuous data were analyzed as
weighted mean difference (WMD) with 95% CI. If 95% CI
included 0, we assumed that the difference between
flurbiprofen axetil and control groups was not statistically
significant. For combined data, a random model was used.
Analyses were performed using ReviewManager software
(version 4.2, Cochrane collaboration). Data were represented
forest plot to evaluate treatment effect. The I2 test was used
to assess heterogeneity. A value greater than 50% is
considered to have substantial heterogeneity. Three
subgroup analyses were created to facilitate analysis based
on the strategy of flurbiprofen axetil administration
(administration alone with or without venous occlusion
before propofol injection, or administration as a mixture
with propofol).

RESULTS
Twelve published trials using flurbiprofen axetil to prevent
propofol induced injection pain were identified after
screening all relevant trials. All trials were published
between 2000 and 2009. Of these, one trial was excluded
due to publication in a letter format.10 Same original data
were found in two different full trials.11 12 We contacted
authors for explanation but did not receive a response; we
analyzed the data from one trial. A total of ten trials with
1320 patients meeting inclusion criteria were included in this
analysis. (Figure 1) The characteristic of included trials were
summarized in table 1. Three trials were published in
Chinese 11 13 14, the rest in English.

Three methods of flurbiprofen axetil intervention were
described in this review including pretreatment with
flurbiprofen axetil without venous occlusion, flurbiprofen
axetil preceded by venous occlusion and a mixture of
flurbiprofen axetil and propofol. One trial had three
comparisons to test all three methods.15 Flurbiprofen axetil
at a dose of 50mg was used in majority of the trials. Two
trials compared flurbiprofen axetil 25mg with placebo as
control.16 17Only one study used 75mg flurbiprofen axetil
as one of treatment arms.17 Seven trials used other
pharmacologic interventions as one of control arms, such as
lidocaine and metoclopramide.11 13 14 18-21 Largest vein
of hand was used as injection site in eight trials, the cephalic
vein in one trial19 and superficial radial vein of the hand in
one trial.20 Flurbiprofen axetil was used in all included trials
except in one trial where flurbiprofen was used.20

Pain intensity was reported in all included trials using a 4-
point verbal rating scale: 0=none (negative response to
questioning); 1= mild (pain reported only in response to
questioning without any behavioral signs); 2= moderate
(pain reported only in response to questioning accompanied
by behavioral signs or sign reported spontaneously without
questioning); and 3 = severe (strong vocal response or
response accompanied by facial grimacing, arm withdrawal,
or tears).22 23The incidence of patients without pain and
incidence of moderate or severe pain was provided
appropriately in all included 10 trials. A total of four trials
reported pain score only as mean or median with ranges
15-17 21. Standard deviation (SD) could not be reliably
estimated from the range. Thus, these trials were excluded.
from the analysis.

FLURBIPROFEN AXETIL VERSUS NO TREATMENT

Ten trials with thirteen comparison arms had adequate information for analysis.11 13-21

Combined data showed that the incidence of patients without pain was significantly higher in flurbiprofen axetil group compared with control group (RR: 3.46, 95% CI: 2.18, 5.49) with heterogeneity (I^2=71.9%) (Figure 2), NNT to prevent any injection pain of propofol was 2.6. Incidence of moderate or severe pain was also found significant lower in patients pretreated with flurbiprofen axetil (RR: 0.41, 95%CI: 0.31,0.56).

SUBGROUP ANALYSES

Three subgroup analyses were conducted as described at table 2. Flurbiprofen axetil 50 mg was administrated before propofol injection without venous occlusion in five trials. 11 14 15 19 20 Combined data showed the significantly higher incidence of patients without pain in flurbiprofen axetil group compared with no treatment control (RR: 3.14, 95% CI: 1.41, 7.01) with heterogeneity (I^2=85.7%) , NNT was 2.5. Incidence of moderate or severe pain was also found to be significant lower in patients received flurbiprofen axetil pretreatment (RR: 0.41, 95%CI: 0.31, 0.56)

Seven trials used flurbiprofen axetil before propofol injection with venous occlusion. Venous occlusion involved manually compressing the forearm with rubber tourniquet for 2 minutes in six trials 13 15-18 21 and 1 minute in one trial.11 Of these, two trials used flurbiprofen axetil 25mg with venous occlusion to prevent injection pain. 16 17 Combined data showed that flurbiprofen axetil 25mg pretreatment was associated with a higher incidence of patients without pain with a RR of 2.60 (95%CI:1.34, 5.23) without heterogeneity (I^2=0). NNT was 5.0. Seven trials reported data when flurbiprofen axetil 50mg was given with venous occlusion before propofol injection.11 13 15-18 21 The incidence of patients without pain was significantly higher in patients who received flurbiprofen axetil 50mg with venous occlusion compared with no treatment control (RR: 4.41, 95%CI: 3.11, 6.26) without heterogeneity (I^2=0). NNT was 2.1. When preceded by venous occlusion, the incidence of moderate or severe pain was also lower in flurbiprofen axetil group compared with no treatment control. However, the difference only reached statistically significant when flurbiprofen axetil was administrated at a dose of 50 mg (RR: 0.29, 95%CI: 0.21, 0.41) without heterogeneity (I^2 =0)

One trial each reported flurbiprofen axetil administered as a single 75 mg dose 17 and as a mixture with propofol 15. Hence, meta-analysis was therefore no possible. In the later study, flurbiprofen axetil 50mg was given as a mixture with propofol and no significant difference was observed in the incidence of patients without pain and incidence of moderate or severe pain between flurbiprofen axetil group and the control group.

FLURBIPROFEN VERSUS LIDOCAINE:

Seven trials have suitable data for analysis.11 13-16 18 19 21 Pooled data showed no significant difference between flurbiprofen axetil and lidocaine group in the incidence of no pain, moderate or severe pain.(Table 2)

FLURBIPROFEN AXETIL RELATED SIDE EFFECTS

Seven trials reported on flurbiprofen axetil related side effects.14-19 21 Of those, six trials reported no side effects associated with flurbiprofen axetil administration. Only one trial reported adverse effects (phlebitis) on injection site which may not have been due to flurbiprofen axetil administration.14 The incidence of side-effect was not significantly different compared with control and resolved spontaneously.

Figure 1

Figure 1: flow chart for screened, excluded and analysis trials. RCT: Randomized controlled trial.
DISCUSSION

This systematic review demonstrates that pretreatment with IV flurbiprofen axetil is effective for prevention of propofol injection pain. The result is consistent regardless of whether flurbiprofen axetil was administered with or without venous occlusion. The NNT for incidences of patients without pain was 5.0, 2.1 and 2.5 in flurbiprofen axetil 25mg or 50mg administration with venous occlusion and flurbiprofen axetil 50mg administration without venous occlusion before propofol injection, respectively. It appears that flurbiprofen axetil administered at dosage of 50 mg when preceded by venous occlusion before propofol injection provided better analgesic effect.

The mechanism of flurbiprofen axetil associated relief of pain on injection is still not well elucidated. Some proposed mechanisms of propofol induced injection pain include relief of the endothelium irritation, osmolality changes, non pharmacologic pH 24 and attenuation of activation of pain cascade mediators like kinin.25 26 Of those, the most plausible mechanism of propofol induced injection pain was the activation of the plasma kallikrein-kinin system by the lipid solvent and produce bradykinin which modifies the local vein by its vasodilation and result in hyperpermeability. This modification in the local vein increases the contact between the aqueous phase propofol and free nervous ending, resulting in aggravation of pain on injection.25 26 This Phenomenon may be enhanced by prostaglandins 27. NSAIDs have been found to decrease prostaglandins synthesis, therefore flurbiprofen axetil, as one of NSAIDs, might reduce the pain of propofol injection.

Moreover, recent study suggested that the concentration of aqueous free propofol may play an important role in the pain on injection site. 28 Ueki et al found that flurbiprofen axetil could decrease the concentration of free propofol, thereby reducing injection pain with propofol.29

Lidocaine has been widely used to attenuate propofol-induced pain on injection.3 30 A previous systematic review suggested that IV lidocaine pretreatment with venous occlusion was the best method for prevention of pain on injection with propofol.3 In the subgroup analysis, we compared the efficacy between lidocaine and flurbiprofen axetil for preventing propofol injection pain. Our findings showed no statistical difference between flurbiprofen axetil and lidocaine, suggesting comparable efficacy between the two drugs. As such, flurbiprofen axetil could be an effective alternative for the prophylaxis of pain on injection with propofol especially when lidocaine is contraindicated. No flurbiprofen axetil related side effects have been observed even at the dose of 75mg.17 However, flurbiprofen axetil should be used with caution in patients with asthma, gastrointestinal ulceration and renal failure.31 As flurbiprofen axetil is an NSAID, its administration may in addition benefit postoperative pain management.32 Unfortunately, no included trials reported any data related to postoperative pain outcomes.

Heterogeneity is often considered an important limitation of systematic review. In present review, heterogeneity of study results is variable due to the variability of propofol regimens and methods of flurbiprofen axetil pretreatment. Subgroup analyses might have lowered heterogeneity. Furthermore, all included studies have a relatively small group size ranging from 11 to 50. Small study bias is a potential limitation of this review which might cause an overestimation of effectiveness of intervention.33 In addition, publication bias can not be ruled out.

Several areas have been identified in this review for further research. A newer formulation of propofol consisting of medium or long-term chain triglycerides has been reported with less pain on injection.34 35 Only one trial used this formulation as one of the control groups and showed significantly lower incidence of patients without pain using this formulation compared with flurbiprofen axetil pretreatment.20 Further study is needed to investigate the preventive effect of study drug on injection pain with this formulation. Moreover, patient satisfaction, regarded as clinically meaningful measurement for pain, should be incorporated in future studies. Finally, adequately powered, well-designed trials are required to evaluate optimal method of flurbiprofen axetil to prevent propofol induced injection pain and meaningful postoperative outcomes.

In conclusion, flurbiprofen axetil pretreatment significantly reduces propofol induced injection pain. Flurbiprofen axetil...
50mg preceded by venous occlusion provides the greatest benefit.

Figure 3

Table 1: Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of patients</th>
<th>Flurbiprofen axetil</th>
<th>Venous occlusion</th>
<th>Pain score reduction</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujii Y et al. (2009)</td>
<td>124</td>
<td>Yes</td>
<td>Yes</td>
<td>0.75</td>
<td>Significant</td>
</tr>
<tr>
<td>Fujii Y et al. (2018)</td>
<td>123</td>
<td>Yes</td>
<td>No</td>
<td>0.68</td>
<td>Difference</td>
</tr>
<tr>
<td>Fujii Y et al. (2006)</td>
<td>123</td>
<td>Yes</td>
<td>Yes</td>
<td>0.72</td>
<td>Significant</td>
</tr>
</tbody>
</table>

References

19. Karasawa F, Ehata T, Okuda T, Satoh T. Propofol injection pain is not alleviated by pretreatment with flurbiprofen axetil, a prodrug of a nonsteroidal...
Author Information

Yanxia Sun, MD
Department of Anesthesiology, Tong Ren Hospital, Capital Medical University

Tianzuo Li, MD
Department of Anesthesiology, Tong Ren Hospital, Capital Medical University

Fang Chai, MD
Department of Anesthesiology, Tong Ren Hospital, Capital Medical University

Tong J Gan, MD FRCA
Department of Anesthesiology, Duke University Medical Center