Buprenorphine Improves the Efficacy of Bupivacaine in Nerve Plexus Block: A Double Blind Randomized Evaluation in Subclavian Perivascular Brachial Block

A Jadon, M Panigrahi, S Parida, S Chakraborty, P Agrawal, A Panda

Citation

Abstract
Background: Studies examining the benefit of adding analgesic to brachial plexus block have produced mixed results. Although the mechanism of action of these analgesics remains unclear, buprenorphine have been used successfully in brachial block for prolonged postoperative pain relief. We compared the onset, quality and duration of analgesia produced by bupivacaine, either alone or combined with buprenorphine.

Material & Methods: A prospective, randomized double blind study was conducted. Forty patients scheduled to undergo surgery for upper limb under Supraclavicular subclavian perivascular brachial plexus block (SSPB) were included to evaluate the effect of Buprenorphine when mixed with 0.3% bupivacaine used for brachial plexus block. Group-I (control group) (n=20) patients received 30 ml 0.3% bupivacaine+ 1 ml saline and intramuscular 1ml drug(3 μgkg 1 buprenorphine + saline to make volume= 1 ml). Group-II (study group) (n=20) patients received 30 ml 0.3% bupivacaine+ 1 ml study drug (3 μgkg 1 bupivacaine + saline to make volume= 1 ml) and 1 ml of intramuscular injection of saline.

Results: In Group-I the onset time for motor block was 4.05±0.944 min. and sensory block was 6.65± 1.182 min. Group-II the onset time for motor block was 3.75±1.208 min. and sensory block was 4.25±1.25 min. This difference was not significant (p<0.404) for sensory and (p<0.152) for motor block. The mean duration of satisfactory analgesia was 331.2± 33.54 minutes in Group-I and 680.6±86.27 minutes in Group-II the difference in duration between two groups was significant (p<0.0001). The mean duration of motor block was not significant, 309±26.1 minutes in Group-I and 329± 28.4 minutes in Group-II (p<0.352).

Conclusion: We conclude that the addition 3 μgkg 1 buprenorphine to 0.3% bupivacaine mixture for perivascular brachial block in upper limb orthopedic surgery increase the time for complete sensory block. It improves the quality of block and lengthens the duration of analgesia without affecting the duration of motor block.

INTRODUCTION
To date, results of studies evaluating the efficacy of opioids and local anesthetic combinations in the brachial plexus are inconclusive. However, over the past 20 years, several studies have suggested that the addition of certain opiates to the local anesthetic used for brachial block may provide effective, long-lasting postoperative analgesia. Some studies indicated that the agonist-antagonist, buprenorphine, added to bupivacaine provided a longer period of postoperative analgesia than the traditional opiates. This practice can be of particular benefit to patients undergoing ambulatory upper extremity surgery by providing prolonged analgesia after discharge from the hospital. We conducted a prospective double blind study to evaluate the effect of mixing buprenorphine with bupivacaine used for perivascular brachial plexus block. The observations were made for the effect of buprenorphine on the onset of block, quality and duration of postoperative analgesia and associated side effects.

PATIENTS AND METHODS
After approval of the ethical committee, forty healthy consenting adult patients scheduled for upper extremity surgery were enrolled in the study. Premedication was...
provided by tab. Alprazolam 0.5 mg orally 1 hr. before surgery. Anesthesia was given by a subclavian perivascular brachial plexus block. Patients were assigned randomly to either of two groups based on the agents used for the blocks. Group-I (control group) (n=20) patients received 30 ml 0.3% bupivacaine+ 1 ml saline and intramuscular 1ml drug(3 µgkg⁻¹ buprenorphine + saline to make volume= 1 ml). Group-II (study group) (n=20) patients received 30 ml 0.3% bupivacaine+ 1 ml study drug (3 µgkg⁻¹ bupivacaine + saline to make volume= 1 ml) and 1 ml of intramuscular injection of saline. The study was kept double-blind by having 1 anesthesiologist prepare the solutions, a second anesthesiologist performs the blocks, and third anesthesiologists monitor the anesthesia and analgesia thereafter, up to and including the time of the first request for an analgesic medication. The data were reported as means (+/- SD), and differences between groups were determined using repeated measures of analysis of variance (ANOVA) and followed by T test for comparison by using ‘AcaStat’ statistical computer software, P value of < 0.05 was considered to be statistically significant.

Technique: After sterile preparation of the region the 22G, 4 cm needle was inserted through the skin wheel and above the palpating finger immediately lateral to the subclavian artery. Needle was directed 45 degree dorso-laterally parallel to the scalene muscles and toward the elbow of the patient. There was a click once the sheath pierced and entered. The patient felt paresthesias of the hand and fingers once the tip of the needle crossed the perineural sheath. Drug was injected after repeated aspiration to avoid inadvertent vascular entry. After injection, the sensory block tested by sensations to pin prick. Motor block was evaluated by thumb movements e.g. abduction (Radial nerve), adduction (Ulnar Nerve), opposition (Median nerve). Musculocutaneous nerve block assessed by flexion of elbow and supination-pronation of forearm. Hollmen scale was used to assess both sensory and motor blockade. The eight nerves were evaluated for sensory function and four nerves studied for motor blockade. Evaluation was carried out for every minute after completion of the injection and the time of onset was noted for both sensory and motor blockade. The eight nerves were evaluated for sensory function and four nerves studied for motor blockade.

Evaluation was carried out for every minute after completion of the injection and the time of onset was noted for both sensory and motor blockade. Onset of block was defined as minimum of grade 2 in Hollmen scale. Block was considered complete when sensory and motor scores were grade 3 in Hollmen scale. Duration of sensory blockade was considered as the time interval between injection of local anaesthetic and recovery of muscle power. When separate nerve blocks or supplementation with IV analgesia or general anesthesia was required due to inadequate/ failed block were not included in study. Intra-operative and postoperative complications were recorded. All patients were monitored with continuous Pulse, ECG, SpO2 and NIBP every 5 minutes intra-operatively and continuous SpO2 and one hourly Pulse and NIBP post-operatively. Postoperative analgesia was provided by Injection Diclofenac sodium 75 mg IM on demand. Injection Ondansetron 4 mg IV was given for PONV.

HOLLMEN SCALE
Sensory Block : 1 = normal sensation of pinprick, 2 = pin prick felt as sharp pointed but weaker compared with same area in the other upper limb, 3 = pin prick recognized as touch with blunt object, 4 = no perception of pin prick.
Motor block : 1= normal muscle function, 2 = slight weakness in function, 3= very weak muscular action, 4 = complete loss of muscle action.

OBSERVATIONS

Figure 1
Table 1: Demographic profile

<table>
<thead>
<tr>
<th>Group-I</th>
<th>Group-II</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Yr. (Mean ± SD)</td>
<td>30.5 (11.2)</td>
<td>28.2 (10.58)</td>
</tr>
<tr>
<td>Weight Kg. (Mean ± SD)</td>
<td>52.36 (10.38)</td>
<td>55.85(10.29)</td>
</tr>
<tr>
<td>Sex M:F</td>
<td>16:4</td>
<td>17:3</td>
</tr>
</tbody>
</table>

*p = not significant
RESULTS

In Group-I the onset time for motor block was 4.05±0.944 min. and sensory block was 6.65±1.182 min. Group-II the onset time for motor block was 3.75±1.208 min. and sensory block was 4.25±1.25 min. This difference was not significant (p<0.404) for sensory and (p<0.152) for motor block. There was no significant deference in to achieve complete motor block 17.05±2.633 min. in Group-I and, 19.2±3.53 min. in Group-II (p<0.105). The complete sensory block took significantly longer time in Group-I 22.4±3.8 min. than Group-II 20.5±2.5 min. (p<0.037).
The mean duration of satisfactory analgesia was 331.2±
33.54 minutes in Group-I and 680.6±86.27 minutes in
Group-II the difference in duration between two groups was
significant (p<0.0001). The mean duration of motor block
was not significant, 300.9±26.1 minutes in Group-I and
329.2±28.4 minutes in Group-II (p<0.352). Intensity of
motor block (number of cases in different grade) were
comparable (P<0.322), but there was significant difference
in quality of sensory block (P<0.05).

Two patients had arterial puncture (one in each group),
noodle was repositioned and block was completed. Both the
blocks were effective. Inadequate block occurred in 3 patients
(one in Group-I and two in Group-II) required injection
ketamine 25mg increments (50-100mg), one of such patient
was given ulnar block with 5 ml 0.25% bupivacaine posted
for ORIF fracture both bone left forearm. Complete Failed
block occurred in one patient of Group-I, conventional GA
with relaxant was given due to required difficult surgical
position (# both bones and olecranon ORIF through
posterior approach). Nausea and vomiting occurred in 4
patients (two patients of each group) managed with one
Intravenous dose of Injection Ondansetron 4 mg. Horner’s
syndrome was seen in 5 patients (2 in Group-I and 3 in
Group-II) without any sequelae. No patient develop any
serious complications due to block procedure
(pneumothorax, large hematoma or prolonged nerve palsy)
or buprenorphine (respiratory depression) etc. There was no
significant difference in complications between two Groups.

DISCUSSION

This prospective, randomized, double blind study was done
in 40 patients scheduled for upper limb surgery under
subclavian perivascular brachial block (Winnie’s approach)
with similar surgical and demographical profile (Table 1 &
2). We have used the Intramuscular buprenorphine in control
group so that the systemic analgesic effect of buprenorphine
can be differentiated from its peripheral action. 5-7

Results of this study show that addition of 3 µgkg⁻¹
buprenorphine to 0.3% bupivacaine mixture for perivascular
brachial block in upper limb orthopedic surgery improves
the quality of sensory block and lengthens the duration of
analgesia without affecting the duration of motor block.

Buprenorphine-local anesthetic perivascular brachial plexus
block provided postoperative analgesia lasting 3 times
longer than local anesthetic block alone and twice as long as
buprenorphine given by IM injection plus only local
anesthetic block have been reported. This supports the
concept of peripherally mediated opioid analgesia by
Buprenorphine. 8 The addition of buprenorphine to the local
anesthetic used for brachial plexus block in the present study
provided a 2-fold increase in the duration of postoperative
analgesia, with complete analgesia persisting 5-7 hours
beyond the duration provided by the local anesthetic alone in
most of the patients. This practice can be of particular
benefit to patients undergoing ambulatory upper extremity
surgery by providing prolonged analgesia after discharge
from the hospital. 9 In our study the mean duration of
satisfactory analgesia with buprenorphine was 680.6 minutes
is similar as reported in other studies (14-34 hrs.). 9,10,11

Ortells Polo et al 12 in their study of modified supraclavicular
perivascular block recorded an onset time of 4.9± 0.2
minutes and the time for motor paralysis at 15.2± 6.9
minutes. This study support our data i.e. in Group-I the onset
time for motor block was 4.05±0.944 min. and sensory block
was 6.65± 1.182 min. Group-II the onset time for motor
block was 3.75±1.208 min. and sensory block was 4.25±1.25
min.

In our study, we noticed that buprenorphine does not affect
the onset of sensory or motor block; rather the complete
sensory effect was delayed significantly than control group.
Nishikawa K et al have shown that addition of fentanyl to
lidocaine causes an improved success rate of sensory
blockade but a delayed onset of analgesia due to decreased
pH of the mixture. 12 In our study the onset of motor block
was significantly faster than sensory block in both the
groups (Group-I and Group-II), this can be explained by
‘core and mantle' concept of Winnie et al, 1977. 13

Opioids have long been thought to act exclusively within the
central nervous system. An increasing number of studies
recently reported the existence of opioid receptors outside
the central nervous system and therefore suggested that
opioids are also able to produce analgesic effects in the
periphery. 14 Experimental studies have shown that opioids
could produce two types of effect on neuronal excitability.
The first one is a local anesthetic action on the nerve fiber
with a diminution of sodium and potassium conductance.
The second is due to a linkage of the opioid with a receptor
on the internal face of the membrane. Opioids could also
migrate to the posterior horn of the spinal cord after linkage
with axonal receptors. These findings expand the gate
control theory of pain and suggest new approaches such as
the development of peripherally acting opioid analgesics.
Buprenorphine Improves the Efficacy of Bupivacaine in Nerve Plexus Block: A Double Blind Randomized Evaluation in Subclavian Perivascular Brachial Block

without central side-effects. No serious complications related to block technique or addition of buprenorphine were observed in present study (Table 5).

Clinical studies have proved that opioid injection in the brachial plexus produce a prolonged analgesia in the postoperative period. The more liposoluble opioids like fentanyl and buprenorphine are the more effective. Our study and other studies have shown that addition of buprenorphine to local anaesthetic increase the postoperative analgesia to a great extent, however the controversy still exist. Trials of a higher quality are needed to provide a definitive answer.

CONCLUSION

We conclude that the addition 3 µg kg⁻¹ buprenorphine to 0.3% bupivacaine mixture for perivascular brachial block in upper limb orthopedic surgery does not effect the onset time for motor as well as sensory block. It delays in completion of sensory effect. It improves the quality of sensory block and lengthens the duration of analgesia without affecting the duration of motor block.

References