The Theory Of Adaptive Elasticity (Hegedus And Cowin,1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.

M Tsili

Citation
M Tsili. The Theory Of Adaptive Elasticity (Hegedus And Cowin,1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.. The Internet Journal of Bioengineering. 2012 Volume 5 Number 2.

Abstract
In the present paper we proved that the theory of the adaptive elasticity (Hegedus and Cowin, 1976) that deals with internal bone remodeling, can also be used in order to study the surface bone remodeling. Particularly we considered the problem of a long bone which is under an axial load. Our theoretical findings, predicts the results of the studies that describes the athrophy (Uhthoff and Jaworski, 1978; Jaworski , et., al,1980) and the hypertrophy of the bone (Woo, et., al., 1981; Clisouras, 1984; Kaplan, 1997, Monaco, 1997, Beck, 1998; Amendola, 1999, Walker,1999; Bouche,1999; Coutoure and Karlson, 2002; Magnusson, 2003, Hester, 2006, American Academy of Orthopaedic Surgeons, 2007) and comes to agreement with the classic theory of surface bone remodeling, proposed by Cowin and Firoozbaksh (1981).

INTRODUCTION
Living bone is continually undergoing processes of growth, reinforcement and resorption, termed collectively remodeling. There are two kinds of bone remodeling: internal and surface (Frost, 1964). Hegedus and Cowin (1976) proposed a theory for internal remodeling, termed as “theory of adaptive elasticity” which has been used in various problems (Cowin and Van-Buskirk,1978; Tsili, 2000; Qin and Ye, 2004).

The purpose of this work is to show that the theory of adaptive elasticity, can also be successfully used in order to study the surface remodeling of long bone.

THE METHOD
Initially, that is for t <0, the long bone was under a steady state at which no remodeling occurred, subjected only to a constant compressive load G, due to vertical component of the ground reaction force at late stance phase, during normal walking. At t =0 the bone is under a new compressive load G. We want to predict its surface remodeling, after a long time.

We model the long bone as a hollow circular cylinder, with an inner and outer radii a and b respectively. These radii are not constant, but they are altering during the time, that is a = a(t) and b = b(t) with b(t) >a(t). The diaphyseal cross-section area S(t) is given by: S(t) = π(b(t)^2 - a(t)^2), >0. The inner and outer radius and the cross-section area in reference configuration, were a_o, b_o and S_o = π(b_o^2 - a_o^2), >0 respectively.

The equations of the adaptive elasticity (Hegedus and Cowin, 1976) in cylindrical coordinates are, the rate remodeling equation:

\[ \dot{\varepsilon}(t) = A(e) + A_G(e)E_{rr} + E_{\theta\theta} + A_z(e)E_{zz} \]  

the strain-displacement equations:

\[ E_{rr} = u_{rr}, \quad E_{\theta\theta} = (u_{\theta\theta} + a_t) \quad E_{zz} = u_{zz}, \quad E_{\theta z} = (u_{\theta z} - u_t) \]  

the stress in equilibrium state:

\[ E_{rr} = (u_{rr} + u_t) \]  

\[ E_{\theta\theta} = (u_{\theta\theta} + u_{\theta t}) \]
The Theory Of Adaptive Elasticity (Hegedus And Cowin, 1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.

The stress-strain relations for a transversely isotropic elastic material are:

\[
\begin{align*}
T_{rr} &= \frac{T_{rr0}}{r} + T_{rz} + (T_{rr0} - T_{r0})/r = 0 \\
T_{r\theta} &= \frac{T_{r\theta 0}}{r} + T_{2\theta} + 2h T_{r\theta} = 0 \\
T_{z\theta} &= \frac{T_{z\theta 0}}{r} + T_{2z} + h T_{z\theta} = 0 \\
T_{rz} &= \frac{T_{rz 0}}{r} + T_{2r} + h T_{rz} = 0 \\
T_{zz} &= \frac{T_{zz 0}}{r} + T_{2z} + h T_{zz} = 0.
\end{align*}
\]

The rate remodeling equation (1) because of (8) takes the form:

\[
dS(t)/dt = B(S) + B_\tau(S)[E_{rr} + E_{\theta\theta}] + B_z(S)E_{zz}.
\]

where: \(B(S), B_\tau(S), B_z(S)\) are material coefficients where:

**THE PROBLEM AND THE SOLUTION**

For \(t > 0\), the only non-vanishing stress is:

\[
G = \frac{-G}{S(t)} = \pi \left(\frac{b(t)^2 - a(t)^2}{2} \right)
\]

while:

\[
T_{rr}(t) = T_{r\theta}(t) = T_{z\theta}(t) = T_{2\theta}(t) = T_{2z}(t) = 0.
\]

The assumed solutions of our problem are:

\[
u_r = A(t)r, \quad u_\theta = 0 \quad \text{and} \quad u_z = B(t) = 0
\]

where: \(A(t), B(t)\) are unknown functions. Then (2) because of (13) become:

\[
E_{rr} = A(t) \quad E_{\theta\theta} = A(t) \quad E_{zz} = B(t) \quad E_{rr} = E_{\theta\theta} = E_{zz} = 0
\]

Then (4) because of (11), (12) and (14) become:

\[
2(\lambda_2 + \mu_2)A(t) + \lambda_1 B(t) = 0 \quad \text{and}
\]

\[
2\lambda_1 A(t) + (\lambda_1 + 2\mu_1)B(t) = -G/S(t)\pi
\]
The Theory Of Adaptive Elasticity (Hegedus And Cowin, 1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.

Therefore:

**Figure 16**

\[ A(t) = -\lambda_1 G / 2\pi S(t) f \quad B(t) = -(\lambda_2 + \mu_1) G / \pi S(t) f \]  

(16)_{1,2}

where:

**Figure 17**

\[ f = (\lambda_2 + \mu_1)(\lambda_1 + 2\mu_1) - 2\lambda_1^2 \]  

(17)

Substituting (16) and (17) into (2) we find the strains.

Then the remodeling equation (9) becomes:

**Figure 18**

\[ \frac{dS}{dt} = B(S) - \left[ t_1 B(t) + t_2 S(t) (\lambda_1 S + B_1 Z(t)) (\lambda_2 S + \mu_1 Z(t)) G / \pi S(t)^2 f \right] \]  

(18)

We assume that the movements of endosteal and periosteal surfaces are small. The last results that the change of the cross-section area of S(t), is also small. For that reason we use the following approximate linear forms for the material coefficients:

**Figure 19**

\[ B(S) = b_1 S + b_o \quad B_1(S) = b_{1T} S + b_T \quad B_2(S) = b_2 S + b_2 \]

\[ \lambda_1(S) = \lambda_1 + \lambda_1 S \quad \lambda_2(S) = \lambda_2 + \lambda_2 S \quad \mu_1(S) = M_1 + M_1 S \]

\[ \mu_2(S) = M_2 + M_2 S \]  

(19)_{1,2,3,4,5,6,7}

Consequently (18) by the help of (19) concludes:

**Figure 20**

\[ \frac{dS}{dt} = \frac{[b_1^2 T A_1 + b_2 (A_2 + M_2)] G}{\pi S} \]  

(20)

where:

**Figure 21**

\[ F = (\lambda_2 + M_2)(\lambda_1 + 2M_1) - 2\lambda_1^2 \]  

(21)

that is we conclude to an equation of the form:

**Figure 22**

\[ \frac{dS}{dt} = \frac{[b_1 S^2 + b_o S + c_o]}{S} \]  

(22)

with the initial condition:

**Figure 23**

\[ S(0) = S_o \]  

(23)

In order the solutions to have physical sense, they must be positive, that is for \( t \to +\infty \), \( \lim S(t) > 0 \).

**THE SOLUTIONS AND THE PHYSICAL MEANING**

The solution of (22) that satisfies (23) is:

**Figure 24**

\[ b_1 S(t)^2 + b_o S(t) + c_o = e^{2b_1 t} (b_1 S_o^2 + b_o S_o + c_o) \]  

(24)

We define \( \bar{b} = b_o \sqrt{b_1} \) and we distinguish the following cases: 1) \( \bar{b} > 0 \), then (24) takes the following form:

**Figure 25**

\[ S(t) + b_o / 2b_1 = \left[ e^{2b_1 t} (b_1 S_o^2 + b_o S_o + c_o) + (\sqrt{\Delta} / 2b_1)^2 \right] / b_1 \]  

(25)

a) If \( b_o > 0 \), then for \( t \to +\infty \), it follows \( S(t) \to +\infty \). This solution is rejected, because it is unstable. b) If \( b_o < 0 \), then there is no solution, since the limit of \( S(t) \) for \( t \to +\infty \) does not exist. c) Finally if \( b_o = 0 \), then the solution is:

**Figure 26**

\[ S(t) = e^{b_1 t} [S_o b_o + c_o] - c_o / b_o \]  

(26)

We distinguish the following subcases: i) If \( b_o > 0 \), then for \( t \to +\infty \), it results that \( S(t) \to +\infty \) and the solution is rejected. ii) If \( b_o < 0 \), for \( t \to +\infty \), it implies that \( S(t) \to c_o / b_o \). If \( c_o / b_o \leq 0 \), then the solution is rejected. If \( c_o / b_o > 0 \), then the solution is accepted. The cases \( c_o / b_o > S_o \), \( c_o / b_o < S_o \) and \( c_o / b_o = S_o \) correspond to hypertrophy, atrophy and steady state of the bone respectively. iii) If \( b_o = 0 \), then the solution reduces to the form:

**Figure 27**

\[ S(t)^2 = 2c_0 t + S_o^2 \]  

(27)

If \( c_o > 0 \), then for \( t \to +\infty \), it follows that \( S(t) \to +\infty \). If \( c_o < 0 \), the limit does not exist. Finally if \( c_o = 0 \), then for \( t \to +\infty \) it follows that \( S(t) \to S_o \). This solution is accepted and states that after a long time, the bone will continue to be in the same steady state. 2) If \( \bar{b} = 0 \), then (25) reduces to the following form:
The Theory Of Adaptive Elasticity (Hegedus And Cowin,1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Sur-face Bone Remodeling.

Figure 28

\[ S(t)+ \frac{b_2}{2b_1} F = e^{2bt}[b_1S_0^2 + b_0S_0 + c_o]/b_1 \]  

(a) If \( b_1 > 0 \), then for \( t \to \infty \), it follows that \( S(t) \to b_2 \). (b) If \( b_1 < 0 \), then for \( t \to \infty \) it results that \( S(t) \to b_1/2b_2 \). If \( b_1 \leq 0 \), then \( b_1/2b_2 \leq 0 \) and this solution is rejected. Finally if \( b_1 > 0 \), then \( S(t) \to b_2 \). This solution is accepted. The cases: \( b_2/2b_1 > S_o, b_2/2b_1 < S_o, b_2/2b_1 = S_o \) correspond to hypertrophy, atrophy and steady state of the bone respectively. 3) If \( b_1 < 0 \), then (24) takes the following form:

Figure 29

\[ S(t) = b_2/2b_2 \] 

i) If \( b_1 > 0 \) then for \( t \to \infty \) it follows \( S(t) \to b_2 \), that is the solution is rejected. ii) If \( b_1 = 0 \), then we result to equa- tion (26). iii) Finally if \( b_1 < 0 \), then for \( t \to \infty \), it follows that \( S(t) \to \frac{b_2}{2b_2} k \), where:

Figure 30

\[ k = \sqrt{(-\Delta/4b_2^3) - b_2/2b_1} \]  

If \( k > 0 \), then the first solution is accepted, while second is rejected. In addition the cases: \( k > S_o, k < S_o, k = S_o \) correspond to hypertrophy, atrophy and state steady of the bone. If \( k < 0 \), then the first solution is rejected, while second is accepted. Moreover the cases \( k > S_o, k < S_o, k = S_o \) correspond to hypertrophy, atrophy and steady state of the bone.

DISCUSSION

Our model predicts the results of previous studies that describes the hypertrophy (Woo, et., al.,1981) and the atrophy of bone ( Uhthoff and Jaworski 1979; Jaworski et., al., 1980). These studies are also cited in the classic theory of surface bone remodeling, proposed by Cowin and Firoozbakhsh (1981).

In addition concerning the tibia, the model predicts a pathological case of this bone, termed as “ Medial Tibial Stress Syndrome” or “ Shin Splints”. This case is characterized by a periosteal inflammation of the bone and a narrow bone density (Clisouras,1984; Mona-co et. al., 1997; Kaplan et., al.,1997; Beck,1998; Amendola et., al., 1999; Bouche et., al., 1999; Walker, 1999; Couture and Karlson, 2002; Magnusson et., al., 2003; Romansky and Erfle, 2003; Hester, 2006; Academy of Orthopaedic Surgeons, 2007) resulting to tibia’s hypertrophy. Therefore, our problem has three possible solutions. After a long time, the long bone will increase or will decrease its cross section area, or it will be in a steady state if \( G = G_o \)

References


The Theory Of Adaptive Elasticity (Hegedus And Cowin, 1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.

The Theory Of Adaptive Elasticity (Hegedus And Cowin, 1976) That Deals With Internal Bone Remodeling, Could Also Be Used In Order To Describe The Surface Bone Remodeling.

Author Information

Maria. B. Tsili
Department of Physical Education and Sports Sciences, University of Thessaly