Initial Data From The Intracranial Tumour Registry Of The University Of The West Indies: Radio-Pathological Correlation Of Meningiomas

P Johnson, J Jaggon, C Bruce, J Campbell, I Crandon, G Char, D Eldemire-Shearer

INTRODUCTION

Meningiomas are primary intracranial tumors that arise from the arachnoid cap cells of the meninges. They are the most common primary intracranial tumors, and account for about 34% of all primary intracranial tumors (1). While the majority are benign, they have a significant impact on morbidity and mortality due to raised intracranial pressure and other results of mass effect.

Data on meningiomas in Jamaica is scant. There has been one paper previously published describing the epidemiologic profile of meningiomas in Jamaica (2). There are, to date, no studies from the English speaking Caribbean documenting radio-pathological correlation. This paper seeks to utilize data from the newly instituted ITR to report the first such radio-pathological correlation from this region.

METHOD

A retrospective review of all the cases entered into the ITR was done using the search string “meningioma”. Only patients with initial MR imaging done at the UHWI were included in the study. The actual images were not reviewed. Pathological findings were retrieved from the files in the Pathology Department at the UHWI. The World Health Organization (WHO) 2007 criteria were employed for pathological grading.

The following data was retrieved:

A review of the radiological findings was performed, and a correlation with pathological findings was made.

RESULTS

138 cases were initially identified from the ITR based on MRI reports suggesting a diagnosis of meningioma. Fifty-
three cases were excluded, as the pre-operative scan was not performed at the UHWI. Of the remaining 85 cases with available UHWI pre-operative MRI scans, surgical pathology reports were found for 24 patients; fifty-five patients had no evidence of surgical biopsy/resection, while 5 patients were treated at another institution. In one case, a reason for a lack of histology could not be determined. Of the 24 patients with histology of their intracranial masses, 18 were confirmed as meningiomas. The pathological findings of the final cohort of 24 patients are outlined in Table 1.

Figure 1

Table 1. Pathological diagnoses and grade of lesions of final cohort of patients

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of patients</th>
<th>WHO* Grade1</th>
<th>WHO Grade2</th>
<th>WHO Grade3</th>
<th>WHO Grade4</th>
<th>Ne Grade assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitional meningioma</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Meningothelial meningioma</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metaplastic meningioma</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glial stroma multiforme</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pituitary adenoma NOS</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Metastases</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Non-Hodgkin Lymphoma</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Simple Inadequate</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

*WHO: World Health Organization

Of the 18 patients with a confirmed diagnosis of meningioma, only twelve had their ages recorded; these ranged between 33 years and 76 years. Overall, there were seven males and eleven females, thus achieving a Male: Female ratio of 1:1.6. The size of the meningiomas ranged between 6.4 mls and 248 mls, based on imaging measurements. Two cases were described as “en-plaque” and no measurements given. The larger tumours occurred in males (range: 12.8 mls – 248 mls) compared to females (range: 6.4 mls – 113 mls).

Three histological subtypes of meningioma were identified: The most common location was the convexities (Table 2).

Figure 2

Table 2. Location of subtypes of meningioma

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of cases (%)</th>
<th>Transitional meningioma</th>
<th>Meningothelial meningioma</th>
<th>Metaplastic meningioma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convexity</td>
<td>6 (30%)</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Parasagittal</td>
<td>3 (15%)</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Sphenoidal</td>
<td>5 (25%)</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Frontobasal</td>
<td>2 (10%)</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Posterior fossa</td>
<td>3 (15%)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>1 (5%)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10 (100%)</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

The imaging features for the patients with confirmed meningioma are given in Table 3.

In only 6 cases did the reports mention T1 and T2 features of the tumours.

Three of the 9 transitional meningiomas had recorded T1/T2 signal changes. Two demonstrated T1 isointensity and one T1 hypointensity. Two demonstrated T2 hyperintensity and one demonstrated T2 isointensity.

Two of the 7 meningotheial meningiomas had recorded T1/T2 signal changes. Both cases demonstrated T1 isointensity and T2 hyperintensity.

One case of metaplastic meningioma had recorded T1/T2 signal changes. This tumour also demonstrated T1 isointensity and T2 hyperintensity.

Figure 3

Table 3. Imaging features of histologically confirmed meningiomas

<table>
<thead>
<tr>
<th>Type</th>
<th>Enhancement</th>
<th>Oedema</th>
<th>Cystic Change</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitional</td>
<td>9 (89%)</td>
<td>0</td>
<td>3 (11%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Meningothelial</td>
<td>7 (100%)</td>
<td>0</td>
<td>4 (89%)</td>
<td>4 (67%)</td>
</tr>
<tr>
<td>Metaplastic</td>
<td>2 (100%)</td>
<td>1</td>
<td>1 (50%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Of the 6 patients whose masses were histologically proven not to be meningiomas (as suggested by imaging) four had a malignant diagnosis (Table 1).

DISCUSSION

The total number of cases with a final pathologic diagnosis of meningioma was 18. Of these, 50% were transitional, 39% meningotheial and 11% metaplastic. The majority of meningiomas were located in the convexities. This corresponds to other published data (2, 3).

T1 enhancement post administration of chelated gadolinium contrast was seen in all except one case (a transitional meningioma). This is typical of meningiomas (4,5,6).

Unfortunately, T1 and T2 characteristics were reported in
only 6 cases overall. Despite this low number, meningiomas were predominantly T1 isointense and T2 hyperintense. This correlates with other published data (7, 8, 9).

The number of cases finally included in this study (n=24) represents only 18% of the total possible cases (n=138). The reasons for this include:

- Patients with original scans originating from an external institution (38%)
- Patients who had not yet had surgical resection/biopsy (39%)
- Patients who had treatment elsewhere (3.6%)

The low final number of cases (n=24) raises concerns regarding patient management. We were not able to obtain reasons for those patients not having a pathological diagnosis. While the cause of this is unclear, it may be one of the following:

- Long waiting times for surgery given the limited access to functional operating rooms at the UHWI
- Patients refusing surgery
- Patients lost to clinical follow-up

Six (25%) of the final cohort of 24 patients with histology had a pathologic diagnosis other than meningioma (Table 1); four of these had a pathologic diagnosis of a malignancy, including two who were diagnosed with glioblastoma multiforme (GBM), a WHO grade IV glioma. This relatively large number of false positives raises concern for other patients who had a presumptive imaging diagnosis of meningioma but who may in fact have a malignant lesion. Of the two GBMs, none were reported to have associated oedema, but both demonstrated enhancement. One was reported to have cystic changes and haemorrhage. The single non-Hodgkin’s lymphoma (NHL) was located in a parasagittal location and demonstrated enhancement and T1 and T2 isointensity, which are typical findings for NHL (10, 11). Peripheral locations of GBM and NHL are more common; this may also have contributed to the false positive findings (11, 12). GBMs may demonstrate “atypical features” which may have also contributed to additional false positive MRI findings.

One patient with a sellar mass was eventually confirmed to have a pituitary adenoma instead of a meningioma; these are two of the most common differential diagnoses for this location. Both may demonstrate similar MRI features (13).

Review of the previous MR images in this case should prove useful.

A single patient underwent surgery whose specimen was reported as “sample not sufficient for diagnosis”. Evidence of re-biopsy was not found.

Given the retrospective nature of this study, true correlation of imaging and pathologic findings is suboptimal. This is largely due to the non-standardized reporting done by radiologists. Though diffusion weighted imaging is routinely performed on all brain MRI studies done at the UHWI, these findings were not recorded in the reports.

Image guided stereoscopic surgery is available at the UHWI. The MR dataset for this stereoscopic imaging is routinely invoked for all intracranial tumours undergoing biopsy or resection. To date, no study has been published evaluating its efficacy at this institution. Advanced MRI studies such as MR tractography, MR perfusion, multivoxel spectroscopy and fBold imaging are not currently offered at the UHWI. However, these techniques are usually reserved for intra-axial tumours and not routinely employed for meningiomas.

A follow-up prospective study reviewing patients in the registry utilizing a standardized format of reporting may prove useful.

References

Author Information

P Johnson
Department of Surgery, Radiology, Anaesthetics & Intensive Care, University of the West Indies

JR Jaggon
Department of Pathology, University of the West Indies

C Bruce
Department of Surgery, Radiology, Anaesthetics & Intensive Care, University of the West Indies

J Campbell
Department of Surgery, Radiology, Anaesthetics & Intensive Care, University of the West Indies

I Crandon
Department of Surgery, Radiology, Anaesthetics & Intensive Care, University of the West Indies

G Char
Department of Pathology, University of the West Indies

D Eldemire-Shearer
Department of Community Health and Psychiatry, University of the West Indies