Lumbar Disc Hernia Migrating To The Epidural Posterior Space: A Rare Entity

M C Ba, R Kleib, C Sy, J Diabang, N Ndoye, A B Thiam, M Thioub, I Tine, S B Badiane

INTRODUCTION

Lumbar disc hernia and migration is a well-known phenomenon [1,17]. It can lead to the appearance of clinical signs and sometimes worsening of neurological state. Usually, the direction of movements is facilitated by the anterior epidural space, through the Longitudinal Posterior Ligament [1,12,30].

It rarely reaches the posterior epidural space (sublaminar area) and therefore can be responsible for misdiagnosis, even where modern imaging modes are available.

We’ve recorded four cases of posterior epidural disc migration (PEDM) collected in the Department of Neurosurgery of Fann Teaching Hospital Dakar, Senegal. Our aim is to describe clinical and radiological aspects of this specific localization on the one hand and on the other hand, suggest some useful procedures which can help to reduce risk errors when MRI is not disposable.

CASE 1

A 52 year-old man, mechanic is admitted for left radicular L5 pain. He had no past medical story. One week before, he noticed a weakness of his lower limbs and the appearance of urine incontinence. Clinical examination revealed a complete paraplegia (0/5 at motor testing), straight leg raising limitation (45°), perineum anesthesia, and an absence of knee jerk and plantar reflexes.

CT scan showed non specific lumbar canal stenosis (Fig 1)

And MRI was performed and a T1 and T2 hypo intense posterior epidural mass lesion found (Fig 2)
The patient immediately underwent surgery. After an L4 laminectomy, the bulk disc hernia was removed. An extension to the L5 armpit was also found and removed.

A partial recovery of motor function was noticed (3/5 motor grading). Three months later, motor and sensory functions were back to normal but urinary troubles remained.

CASE 2

A 47 year old man was admitted for low back pain and bilateral radicular bilateral algia. These disorders started two months ago. A loss of urinate ability and constipation were also noted.

Upon clinical examination, the patient presented paraparesis (3/5 on the left and 4/5 on the right limb), S1 bilateral anesthesia and stiff lumbar spine as well as an absence of knee and achilles reflexes.

An MRI was made and showed posterior epidural mass lesion in the L4-L5 posterior space, of a 28.3mm and 11.6mm size. There was also an important mass effect on the dura mater.

A posterior approach surgery was performed. After laminectomy, the disc hernia was gently separated from dura mater and removed.

Four months later, the only remaining trouble was urinary incontinence. Histopathological examination revealed signs of disc degeneration associated with connective tissue.

CASE 3

A 48 year old man, MD, complained of bilateral L5 sciatica with urinate disability. A long past medical history of low back pain was noted.

He was found to present flaccid paraparesis (4/5), L5 and S1 loss of sensitive functions, straight raise limitation and a stiffness of the lumbar spine (35°).

The patient underwent an MRI which revealed L5 hypointense mass lesion enhanced by contrast (Fig 5 and 6).
A posterior approach surgery was done. After an L4 laminectomy, the disc was removed from the posterior epidural space. Six months after, all neurological disorders disappeared. A microscopic examination showed aspects of disc degeneration.

CASE 4

A 42-year-old fireman was complaining about bilateral sciatica after working on a weight load lift. The disorders had been noticed for two months. One month before admission, he presented with constipation and urinary disability. Clinical examination demonstrated bilateral paraparesia (4/5), S1 hypoesthesia and perineal anesthesia.

MRI was performed on him, which revealed an L4-L5 extruded disc with migration to the posterior epidural space. The disc was removed through L4 laminectomy. The post-operative period was uneventful. One year after surgery, there still was an S1 right motor deficit (4/5) and ipsilateral partial loss of his sensitive function.

DISCUSSION

From 2008 to 2011, 380 lumbar disc hernias were followed in our Department. Four posterior epidural disc migrations were found (0.16%). This rarity is frequently noted [5,8,17].

The underneath table summarizes reported cases of PEDM

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>N of cases</th>
<th>Clinical Presentation</th>
<th>Imaging</th>
<th>Lumbar level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebental, 1972</td>
<td>2</td>
<td>Radicular pain</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Richter, 1976</td>
<td>1</td>
<td>Lumbago</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Liu et al., 1990</td>
<td>1</td>
<td>Radicular pain</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Hirano et al., 1999</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Sclater et al, 1992</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Schnee et al., 1998</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Wertz et al., 1998</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Pabel et al., 1999</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Hedges et al., 1999</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Uno et al., 1999</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Bello et al., 2000</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Dang et al., 2001</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Besser et al., 2001</td>
<td>3</td>
<td>CES, Radicular pain</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Sen et al., 2001</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Koo et al., 2003</td>
<td>3</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Seo et al., 2003</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Noh et al., 2004</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Welch et al., 2004</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Tanaka et al., 2005</td>
<td>2</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Cho et al., 2006</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>El Amri et al., 2008</td>
<td>2</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Decousso et al., 2009</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Carty et al., 2009</td>
<td>3</td>
<td>CES, Radicular pain</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Kuster et al., 2010</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Noh et al., 2010</td>
<td>1</td>
<td>CES</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
<tr>
<td>Ali et al., 2011</td>
<td>6</td>
<td>CES, Radicular pain</td>
<td>MRI</td>
<td>L4-L5</td>
</tr>
</tbody>
</table>

Several mechanisms are supposed to explain the appearance of posterior epidural disc migration.
Epidural disc hernia). It can be interesting to look for the compressions is not easy (lumbar canal stenosis, anterior infections) [5,18,21]. In our practice an important question differentials can then be excluded (tumor, hematoma, inflammatory peri fragment disc reactions () Other possible permits surrounding enhancement provided by weighted and [1,10] hypo or hyper intense in T2 weighted [25,35]). Contrast injection is strongly recommended. It has limits for an absolute diagnosis.

MRI is the gold standard for diagnostic purposes even if it is frequently made late and therefore, the therapeutic result may be bad.

Presumptive diagnostic is very difficult in case of lack of MRI. CT scan and myelography can be helpful but they give no specific images. Unfortunately they are the only available radiologic investigations in most African sub Saharan countries.

MRI is the gold standard for diagnostic purposes even if it has limits for an absolute diagnosis.

In the typical MRI, herniated disc is hypo intense in T1 weighted and [1,10] hypo or hyper intense in T2 weighted [25,35]. Contrast injection is strongly recommended. It permits surrounding enhancement provided by inflammatory peri fragment disc reactions (). Other possible differentials can then be excluded (tumor, hematoma, infections) [5,18,21]. In our practice an important question to ask is: how to deal with PEDM in case of lack of MRI? The differential diagnosis with other nerve root compressions is not easy (lumbar canal stenosis, anterior epidural disc hernia). It can be interesting to look for the epidural fat tissue disappearance or the presence of a disc density mass in the sublaminar area.

Surgical treatment is mandatory. Minimal invasive approaches like interlaminar or endoscopy can be dangerous and a source of complication (dural damage, incomplete disc removal). We prefer laminectomy which allows complete exploration, safe resection of adhesions and intervertebral disc space exploration.

Surgical procedure must be performed in the quickest possible time when cauda equina syndrome is present. In case of late treatment the lesions can be definitive (two of our patients present permanent urinary disorders)

CONCLUSION

Epidural posterior lumbar disc migration is rarely seen. No presumptive diagnosis is possible without MRI. In our practice, MRI is not always possible to realize. On CT or myeloCT, disc density in the sublaminar area must be looked for carefully. When cauda equina syndrome is present, laminectomy is the safest approach.

References

10. Eugene A, William C: Posterior epidural migration of an extruded lumbar disc fragment causing cauda equina syndrome. Clinical and magnetic resonance imaging...
22. Lutz JD, Smith RR, Jones: CT myelography of a fragment of lumbar discsequestrated posterior to the thecal sac. AJNR Am neouroradiol1990;11:610-611
Author Information

Momar Code Ba
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal
momarbacode@gmail.com

Remy Kleib
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Cheikh Sy
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

John Diabang
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Ndaraw Ndoye
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Alioune Badara Thiam
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Mbaye Thioub
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Ibrahima Tine
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal

Seydou Boubakar Badiane
Centre Hospitalier Universitaire de Fann. Service de Neurochirurgie
Dakar, Senegal