Treatment Of Complicated Major Trauma Of The Elbow And Forearm By The Musculo-Cutaneous Latissimus Dorsi Flap With A Skeletonized And Denervated Pedicle

A Bogdanov-Berezovsky, A Korengreen, J Groen, B Courchia, Y Shoham, E Silberstein, Y Krieger

Citation

Abstract
Major complicated injuries of the upper limb that once led to amputation are now being successfully salvaged. The goals of treatment in such cases are rigid fixation of fractures, reliable stable coverage of important structures, preservation of function and an acceptable cosmetic result. There is no consensus in the literature regarding the treatment strategy of upper limb trauma with damage distal to the olecranon. The latissimus dorsi musulocutaneous flap is often used for upper limb reconstruction for functional elbow restoration following different sorts of injuries [1-5]. We report two cases of major trauma of the elbow and forearm distal to the olecranon, that have been successfully treated by skeletonized, pedicled, denervated latissimus dorsi musculo-cutaneous flaps.

INTRODUCTION
Major complicated injuries of the upper limb that once led to amputation are now being successfully salvaged. The goals of treatment in such cases are rigid fixation of fractures, reliable stable coverage of important structures, preservation of function and an acceptable cosmetic result. There is no consensus in the literature regarding the treatment strategy of upper limb trauma with damage distal to the olecranon. The latissimus dorsi musulocutaneous flap is often used for upper limb reconstruction for functional elbow restoration following different sorts of injuries [1-5].

We report two cases of major trauma of the elbow and forearm distal to the olecranon, that have been successfully treated by skeletonized, pedicled, denervated latissimus dorsi musculo-cutaneous flaps.

PATIENTS AND METHODS

CASE 1
A 24 year old male was admitted to our hospital after being involved in a motor vehicle accident. At admission he was diagnosed as suffering from a crush injury of his right arm with an open comminuted fracture and dislocation of the right proximal radius and ulna (as seen in figure 1), and fractures of metacarpal bones 4-5.

Figure 1
He initially underwent debridement of soft tissues, and a Vacuum Assisted Closure (VAC) device was applied. Afterwards, the patient underwent external fixation of the fractures and multiple sessions of lavage and debridement. One month after admission he underwent additional debridement of soft tissues and reconstruction of the defect by a Latissimus Dorsi (LD) musculo-cutaneous flap. The
flap was raised on its thoracodorsal pedicle and all the muscle attachments were divided. Additionally, the thoracodorsal nerve was divided and the pedicle was further elongated by dissection up to scapular circumflex vessels (as seen in figures 2-3).

Figure 2

Exposed elbow joint and bones were covered by the LD flap skin paddle, and the rest of the wound by the flap's muscle that was then covered by a split thickness skin graft. The wounds healed well, and successful flap coverage was achieved to a point six centimeters proximal to the distal wrist crease. After the successful operation the patient was referred to physiotherapy and occupational therapy. At 12 months follow up the patient has begun using his hand for basic daily activities (see figure 4).

Figure 3

CASE 2

A 32 year old male was admitted to our hospital after being involved in a motor vehicle accident during which his semi-trailer truck rolled over and his left upper limb was trapped under the cabin for approximately 90 minutes. He sustained a crush avulsion injury of his left upper limb with an open fracture dislocation of the elbow, with exposed olecranon and ulna. He initially underwent lavage, debridement and external fixation of the fractures, and the wound was treated by a VAC device. The patient underwent three additional sessions of lavage and debridement of unviable tissues. Eight days after admission the external fixation device was exchanged, reattachment of the triceps muscle was performed, and the elbow was covered by a LD musculo-cutaneous flap. The flap was raised in a similar manner to the one described earlier. The skin paddle was sutured onto the elbow and the rest of the muscle was grafted. The flap reached a point 10cm proximal to the distal wrist crease. After reconstructive surgery the patient continued a rehabilitation program. At 5 months follow up the patient demonstrated basic movement of his right forearm and hand.

DISCUSSION

Considerations for reconstruction of complex elbow and forearm wounds depend on the specific defect, patient demographics, donor site morbidity, and medical center capabilities [6]. Locoregional flap reconstruction is limited by the size of the defect, arc of rotation, and amount of available surrounding tissue. Microsurgical expertise, equipment and time are prerequisites for microsurgical free flap reconstruction. In addition, patient comorbidities and
In our two reported cases, the pedicle of the flap was skeletonized and dissected to the scapular circumflex vessels. The thoracodorsal nerve was additionally divided. These measures significantly elongate the distal zone of coverage up to the distal third of forearm.

CONCLUSION

The LD musculo-cutaneous flap is a reliable choice for post-traumatic reconstruction of complicated injuries of the upper limb. It provides stable coverage of the elbow and forearm. In our experience, skeletonization of the thoracodorsal pedicle, dissection to the scapular circumflex vessels and division of the thoracodorsal nerve, significantly elongate the pedicle and permit successful coverage of traumatic injuries as distal as the distal third of the forearm. Reconstruction by the LD flap is a simple and reasonable reconstructive option with minimal complications and minimal donor site morbidity. Due to the above and to the fact that the donor site is located far from the zone of injury, reconstruction by the LD flap may spare free flap coverage thus saving valuable time and expenses.

References

Author Information

Alex Bogdanov-Berezovsky
Department of Plastic and Reconstructive Surgery, Soroka University Medical Center

Amir Korengreen
Department of Orthopedic Surgery, Soroka University Medical Center

Jeremiah Groen
Faculty of Health Sciences, Ben-Gurion University of the Negev

Benjamin Courchia
Faculty of Health Sciences, Ben-Gurion University of the Negev

Yaron Shoham
Department of Plastic and Reconstructive Surgery, Soroka University Medical Center

Eldad Silberstein
Department of Plastic and Reconstructive Surgery, Soroka University Medical Center

Yuval Krieger
Department of Plastic and Reconstructive Surgery, Soroka University Medical Center