A Study Of Correlation Between Derived And Basic Anthropometric Indices In Type 2 Diabetes Mellitus
L Olayaki, S Gesua, O Jimoh, M Ajao, A Olawepo, M Ighodalo

INTRODUCTION
The World Health Organisation (WHO) estimates that 4 billion people, i.e. 80% of the world population, use herbal medicine for some aspect of primary health care (Farnsworth et al., 1985). Many herbs either wholly or their extracts are consumed by pregnant women effects of which are not known on the mother and the children. Ocimum gratissimum (Linn) is one of the herbs commonly consume by pregnant women in Nigeria. O. gratissimum is one of the species from the genus Labiaceae is native to the tropical and warm temperate region of the old world. O.gratissimum is one of the from the genus. It is commonly called African basil or shrubby basil. It is Efinrin in Yoruba, Aai doya ta gida in Hausa and Nchonwu in Igbo (Owulade, 2004). In Nigeria, the plant is used in the treatment of miscarriage (Ogbe et al., 2009), diarrhoea (Sofowora, 1993), and high fever (Oliver, 1960). It has also been reported to have antibacterial (Nakamura et al., 1999) and antihelmintic (Pessoa et al., 2002) activities. This is however, without information on its effect on progesterone and fetal outcome during pregnancy. This study was therefore designed to provide information on the effect of aqueous extract of O. gratissimum leaves on progesterone and fetal outcome during pregnancy. Several studies have shown that plant extracts could alter the concentrations and functions of female reproductive hormones (Telefo et al., 1998 and Benie et al., 2003).

MATERIALS AND METHODS
PREPARATION OF EXTRACT
O. gratissimum leaves were purchased from a local herb store at Ijora, Lagos, Nigeria. The leaves were at the Pharmacognosy Department of the College of Medicine, and Department of Botany and Microbiology, University of Lagos, using a herbarium specimen. The leaves were washed and air-dried. The aqueous extract of O. gratissimum leaf was prepared using the method described by Farida et al., 1987, then filtered and the residue was discarded. The filtrate was subsequently evaporated to dryness. The resulting powder of the extract was stored in capped bottles until needed. The extract of O. gratissimum (5g) was dissolved in 1000ml distilled water to make a stock of 5mg/ml.

TREATMENT OF RATS
Twenty one albino rats (Rattus norvegicus, Muridae) weighing between 150 to 200g and obtained from Animal Breeding Unit, College of Medicine, University of Lagos, were used for this study.
All animals were housed in plastic cage with stainless still steel mesh cover under standard laboratory conditions (light period 6:30am to 7:00pm), temperature 27±2°C, relative humidity 55%, with food and water freely available. They received humane care.

The rats were divided into three groups of Control, 100mg/kg O. gratissimum-treated and 200mg/kg O. gratissimum treated.

Female and male rats were caged together during the night. The morning that conception was verified by the presence of sperm in a vaginal smear was designated gestational day 0.

The O. gratissimum groups were fed with 100mg/kg and 200mg/kg aqueous extract of O. gratissimum respectively from gestation day 2 to gestation day 19 when the animals were sacrificed.

On the 19th day, the animals were sacrificed by means of cervical displacement. Blood was taken and the uteri removed allowing for examination of the foetuses. The number of resorptions, weight of foetuses, size and external morphological examination were recorded (Beck, 1989).

EXTERNAL EXAMINATION OF THE FOETUSES

With the help of a magnifying glass, the presence or absence of cleft palate was observed, as well as the position of eye and ear implantations, the tail (form and length). The extremities were examined for abnormalities such as polydactyl and syndactyl.

PROGESTERONE ASSAY

Immediately after the rats were sacrificed, blood was collected from the heart by syringe and transferred to plain tube. Samples were then centrifuged at 40°C and serum from each rat was stored at -20°C. Serum progesterone concentration was determined by enzyme immunoassay technique (Progesterone Enzyme Immunoassay Test Kit, Catalog No. 2077Z, Diagnostic Automation Inc., Calabasas, CA, U.S.A.).

TABLE 1. Effects of aqueous extract of O. gratissimum on litter size, litter weight, maternal weight gain and serum progesterone in rats.

<table>
<thead>
<tr>
<th>Group</th>
<th>Litter Size</th>
<th>Litter Weight</th>
<th>Maternal Weight Gain</th>
<th>Serum Progesterone (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.7±1.6</td>
<td>6.7±0.7</td>
<td>63.7±2.6</td>
<td>101.4±4.8</td>
</tr>
<tr>
<td>O. gratissimum 100mg/kg</td>
<td>9.2±2.9</td>
<td>4.5±0.1</td>
<td>56.0±1.6</td>
<td>109.4±3.8</td>
</tr>
<tr>
<td>O. gratissimum 200mg/kg</td>
<td>9.4±2.3</td>
<td>4.3±0.1</td>
<td>56.1±3.8</td>
<td>111.7±1.6</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD. Number of rats in each group = 6.

DISCUSSION

The results of our study indicate that aqueous extract of O. gratissimum increased litter size and serum progesterone in rats and reduced litter weight and maternal weight gain during pregnancy.

Some of the constituents of O. gratissimum are alkaloids, saponins, tannins, phlobatannins, anthraquinones, steroids, terpenoids, flavonoids, and cardiac glycosides (Akinmoladun et al., 2007 and Edeoga et al., 2006). Studies by Yu et al., (2003) showed that saponin treatments lower serum androgens and 17β-estradiol, but elevate progesterone.
levels, suggesting that saponins modulates steriodogenesis in the ovary. The observed increase in plasma progesterone concentration could be due to stimulatory effects of O. gratissimum on progesterone production. But because of the anti-diarrhoeal effects of O. gratissimum (Sofowora, 1993), it could have other mechanisms of action.

Progesterone has an antiestrogenic effect on the myometrial cell, decreasing their excitability, their sensitivity to oxytocin, and their spontaneous electrical activity while increasing their membrane potential (Ganong, 2003). The increased litter size could be due to the ability of progesterone to reduce myometrial cells excitability, thereby increasing the number of implantation and subsequent number of life fetuses. The reduced litter weight could be due to increased number of fetuses, but because of the accompanied reduction in maternal weight there might be associated antinutrient agents in the O. gratissimum extract.

There is need for further study in order to isolate the active compound that is responsible for the increased progesterone and those that are responsible for the reduced maternal weight and fetal weight. In conclusion, oral administration of aqueous leaf extract of O. gratissimum could be effective in increasing implantation and prevent premature delivery.

References

Author Information

L.A. Olayaki
Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

S.S. Gesua
Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

O.R. Jimoh
Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

M.S. Ajao
Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

A. Olawepo
Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

M. Ighodalo
Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria