General Comments on Buffers

R Lundblad

Citation

Abstract
The major factor in biological pH control in eukaryotic cells is the carbon dioxide-bicarbonate-carbonate buffer (Scheme I) system. There other biological buffers such as bulk protein and phosphate anions which can provide some buffering effect, metabolites such as lactic acid which can lower pH and tris(hydroxymethylaminomethyl) methane, THAM®) has been used to treat acid base disorders. pH control in prokaryotic cells is mediated by membrane transport of various ions including hydrogen, potassium and sodium.

Figure 1
In the laboratory, the bicarbonate/carbonate buffer system can only be used in the far alkaline range (pH 9-11) and unless “fixed” by a suitable cation such as sodium, can be volatile.

A variety of buffers, most notably the “Good” buffers which were developed by Norman Good and colleagues, have been developed over the years to provide pH control in in vitro experiments. While effective in controlling pH, the numerous non-buffer effects that buffer salts have on experimental systems are somewhat less appreciated. Some effects, such as observed with phosphate buffers, are based on biologically significant interactions with proteins and, as such, demonstrate specificity. Other effects, such as metal ion chelation, can be considered general. However, the binding of metal ions by a specific buffer must be carefully evaluated considering the recent controversy regarding the ability of MOPS buffer to bind magnesium ions. There are some effects where the stability of a reagent is dependent on both pH and buffer species. One example is provided by the stability of phenylmethylsulfonyl fluoride (PMSF). PMSF was less stable in Tris buffer than in either HEPES or phosphate buffer; PMSF is less stable in HEPES than in phosphate buffer. Activity was measured by the ability of PMSF to inhibit chymotrypsin; all activity was lost in Tris (10 mM; pH 7.5) after one hour at 25°C while activity was fully retained in phosphate (10 mM, pH 7.5). This is likely a reflection of the nucleophilic property of Tris which appears to be enhanced in the presence of divalent cations such as zinc. The loss of activity, presumably the result of the hydrolysis of the fluoride to hydroxyl function, is more marked at more alkaline pH. Tris can also function as phosphoacceptor in assays for alkaline phosphatase but was not as effective as 2-amino-2-methyl-1,3-propanediol. The various nitrogen-based buffers such as Tris, HEPES, CAP, and BICINE influence colorimetric protein assays.

Other specific examples are presented in Table 1.
Table 1: Effects of Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACES</td>
<td>Competitive inhibitor of γ-aminobutyric acid receptor binding</td>
</tr>
<tr>
<td>ADA</td>
<td>Competitive inhibitor of γ-aminobutyric acid receptor binding, chelation of calcium ions²⁶⁻³⁰</td>
</tr>
<tr>
<td>MSG</td>
<td>Interacts with DNA, yielding distortion of DNA electropherograms</td>
</tr>
<tr>
<td>BOCINE</td>
<td>Chelation of calcium ions²⁶⁻³⁰, protects liver alcohol dehydrogenase from inactivation by sedoheptonic acid³³⁻³⁶</td>
</tr>
<tr>
<td>Borate</td>
<td>Anomalous complex formation with nucleic acids³³⁻³⁶, complex formation with carbohydrates³³⁻³⁶, participant in the modification of arginine residues by 1,2-cyclobutanedicarboxylate³³⁻³⁶</td>
</tr>
<tr>
<td>Cacodylic Acid</td>
<td>Reaction with sulfhydryl compounds³³⁻³⁶</td>
</tr>
<tr>
<td>Carbonate</td>
<td>Enhances rate of reaction of phenylglyoxal with arginine residues in proteins²⁵⁻²⁶, modulation of peroxynitrite reactions with proteins¹¹⁻¹⁺², modulation of CO₂ oxidation reactions¹³⁻¹⁵</td>
</tr>
<tr>
<td>Citrate</td>
<td>Chelation of calcium ions²⁶⁻³⁰</td>
</tr>
<tr>
<td>DFPS</td>
<td>Free radical generation³³⁻³⁶, and complexation of copper ions³³⁻³⁶, reported adverse effects in tissue culture³³⁻³⁶</td>
</tr>
<tr>
<td>MES</td>
<td>Complexes copper ions³³⁻³⁶</td>
</tr>
<tr>
<td>MOFS</td>
<td>Adverse effect on smooth muscle contraction²³⁻²⁶, oxidation of metal ions²²⁻²⁶, formation of nitric oxide donors on incubation with peroxynitrite³⁴⁻³⁶, slow reaction with hydrogen peroxide²³⁻²⁶</td>
</tr>
<tr>
<td>Phosphate</td>
<td>Catalysis of the racemization of 5-phenylhydantoin³⁹⁻⁴⁰</td>
</tr>
<tr>
<td>PIPES</td>
<td>Binding to bile salt-stimulated lipase³⁹⁻⁴⁰, variation in physiological response based on vendor source³⁹⁻⁴⁰, inhibition of a K⁺-activated phosphatase³⁰⁻³⁰</td>
</tr>
<tr>
<td>TES</td>
<td>Interaction with extracellular matrices³⁵⁻³⁶, inhibition of the interaction of proteoglycans with type 1 collagen³⁵⁻³⁶</td>
</tr>
<tr>
<td>Tricine</td>
<td>Chelating agent²⁵⁻²⁶, tricine radicals have been reported in the presence of peroxide-forming enzymes³³⁻³⁶</td>
</tr>
<tr>
<td>Tris</td>
<td>Nucleophile³³⁻³⁶, and enzyme inhibitor³³⁻³⁶</td>
</tr>
</tbody>
</table>

References to Table 1

References

1. Lubman, R.L. and Crandall, E.D., Regulation of intracellular pH in alveolar epithelial cells, Amer.J.Physiol. 262, L1-L14, 1992

11. Montigny, C. and Champeil, P., Use of metallochromatic dyes and potentiometric pH-meter titration to detect binding of divalent cations to "Good's" buffers: 4-morpholinepropanesulfonic acid (Mops) does not bind Mg2+, Anal.Biochem. 366, 96-98, 2007

15. Tomida, H. and Schwartz, M.A., Further studies on the catalysis of hydrolysis and aminolysis of benzylpenicillin by metal chelates, J.Pharm.Sci. 72, 331-335, 1983

Author Information

Roger L. Lundblad