Phytochemical and Micronutrient Composition of Anacardium Occidentale Linn (cashew) stem-bark hydroethanolic extract and its effect on the fasting blood glucose levels and body weight of diabetic wistar rats
C Eliakim-Ikechukwu, A Obri, O Akpa

INTRODUCTION
There are over 150 million people with diabetes mellitus worldwide (Moller and Filler, 1991). The frequency may escalate, with a major impact on the population of developing countries due to absence of effective and affordable interventions of diabetes mellitus (Marx, 2002). The search for anti-diabetic agents has been focused on plants because of their availability, effectiveness, affordability, and probable low side effects (Marles and Farnsworth, 2005). Traditional medicinal plants with various active principles and properties have been used since ancient times to treat a great variety of human diseases such as diabetes mellitus. The beneficial multiple activities like altering carbohydrate digestion and absorption (Tiwari and Rao, 2002; Nelson et al., 1991), stimulating beta cells (Shanmugasundaram et al., 1990; Abdel et al., 1997 and Chakravathy et al., 1980) mimicking the actions of the insulin (Collier et al., 1987), inhibiting mopping up reactive oxygen species (Tiwari and Rao, 2002) present in medicinal plants account for their anti-diabetic effects. Some herbal preparations contain important micronutrients that may have favourable effects on glycaemic control and body weight (Yeh et al., 2003)
The pathogenesis of diabetes mellitus is multifactorial and demands multi-modal therapeutic approach. Medical nutrition therapy is a cornerstone in the management of diabetes though several areas of uncertainty in the dietary guidelines still exist (Franz et al., 2002) The common denominator in diabetes mellitus is elevated fasting and postprandial blood glucose levels. Elevated blood glucose (hyperglycaemia) per se does not cause diabetic complications. It is rather the detrimental effect of glucose toxicity due to chronic hyperglycaemia, which is mediated and complicated through oxidative stress (Tiwari and Rao, 2002). The pancreas has a relatively weak intrinsic defense system against oxidative stress (Tiedge et al., 1997) and therefore the defense needs to be externally strengthened
Phytochemical and Micronutrient Composition of Anacardium Occidentale Linn (cashew) stem-bark hydroethanolic extract and its effect on the fasting blood glucose levels and body weight of diabetic wistar rats

MATERIALS AND METHODS

Experimental design: Twenty-four presumably healthy wistar rats of both sexes weighing between 150g to 155g were used in this study. The rats were randomly grouped into four groups of six rats each (A, B, C, and D). The male and female rats were put in separate cages.

Experimental diabetes was induced using a single intraperitoneal injection of 65mg/kg body weight of streptozotocin in rats in groups B, C and D after an overnight fast. All the rats were fed with normal rat chow and given water freely.

760g of Anacardium Occidentale L. powder was soaked in 1.5litres of 80% ethanol and homogenized using an electric blender. The homogenate was allowed in the refrigerator at 4ºC for 48hours. The mixture was then filtered with a chess cloth, and then with Whatman No.1 filter paper. The homogenous filtrate got was concentrated using a rotary evaporator to about 10% of its original volume. The concentrate was allowed open in a water bath at 40ºC for complete dryness. The yield was 47.4g (6.24%) of an oily brown substance which was kept refrigerated until use. The extract was reconstituted with normal saline before administration.

Non-diabetic group A rats and diabetic group B rats received 0.4ml of normal saline. Herbal extract, insulin and normal saline administration were done. Diabetic group C rats received 500mg/kg bwt of Anacardium Occidentale stem-bark extract. Diabetic group D rats received subcutaneous injection of 5IU of insulin as used by Sonia and Srinivasan (1999). The experiment, which lasted for 28 days, was carried out in the Department of Anatomy, University of Calabar, Nigeria with the approval of the Ethics Committee of the university.

Fasting blood glucose was monitored twice weekly using one-touch ultra mini glucometer (LifeScan Inc.) Blood was collected by venepuncture of the tail vein. Body weight was measured every week. 72hours post-induction fasting blood sugar was measured and only rats with fasting blood glucose greater than 13.3mmol/l were adjudged to be diabetic (Cetto et al., 2000) and were used for this study. Quantitative proximate composition was done using methods described by Chang (2003) for percentage protein content, Kirk and Sawyer (1998) for percentage fat content, James (1995) for percentage fibre and carbohydrate contents.

Determination of quantitative micronutrient composition was also done using methods described by Kirk and Sawyer (1998) and James (1995) for Vitamins and minerals. Quantitative phytochemical analysis was done using methods described by Trease and Evans (1996), for flavonoids, saponins and alkaloids Kirk and Sawyer (1998) for tannins and AOAC (1990) for phenols

Statistical analyses: Data are represented as means ± SEM and evaluated using student’s t-test. Groups were considered to be significantly different if p<0.05

RESULTS

Effect of Anacardium Occidentale L. stem-bark extract on fasting blood glucose levels and body weight changes.

Figure 1

Table 1 Mean values of body weight

<table>
<thead>
<tr>
<th></th>
<th>Non-diabetic Group A (negative control)</th>
<th>Diabetic Group B (positive control)</th>
<th>Diabetic Group C (500mg/kg bwt of AC)</th>
<th>Diabetic Group D (5IU of NPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight at the beginning of experiment (g)</td>
<td>150.00±0.00</td>
<td>150.00±0.00</td>
<td>150.00±0.00</td>
<td>150.00±0.00</td>
</tr>
<tr>
<td>Weight at the end of experiment (g)</td>
<td>170.33±1.05</td>
<td>171.57±1.88</td>
<td>163.67±1.02</td>
<td>160.67±1.02</td>
</tr>
</tbody>
</table>

Data represent mean ± SEM n=6 *p<0.05

There was a significant decrease (p<0.05) in body weight in Group B rats. There was a significant increase in body weight in Group C (p<0.05) comparing the weight at the beginning of the experiment and at the end but significant difference does not exist between this group and the negative control.

Figure 2

Table 2 Mean values of fasting blood glucose

<table>
<thead>
<tr>
<th></th>
<th>Non-diabetic Group A (negative control)</th>
<th>Diabetic Group B (positive control)</th>
<th>Diabetic Group C (500mg/kg bwt of AC)</th>
<th>Diabetic Group D (5IU of NPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS at the beginning of the experiment (mmol/l)</td>
<td>4.40±0.56</td>
<td>24.25±0.73</td>
<td>33.67±0.62</td>
<td>25.67±1.80</td>
</tr>
<tr>
<td>FBS at the end of the experiment (mmol/l)</td>
<td>4.20±0.32</td>
<td>21.20±1.03</td>
<td>13.90±0.45</td>
<td>12.53±0.59</td>
</tr>
</tbody>
</table>

Data represent mean ± SEM n=6 *p<0.05

There was significant (p<0.05) decrease in fasting blood
Phytochemical and Micronutrient Composition of Anacardium Occidentale Linn (cashew) stem-bark hydroethanolic extract and its effect on the fasting blood glucose levels and body weight of diabetic wistar rats

Sugar in diabetic groups C and D. Blood glucose returned to normal. In the diabetic group B, fasting blood sugar remained high and significantly (p<0.05) higher than the normal control group.

Quantitative Proximate and Phytochemical composition of Anacardium Occidentale L. stem-bark extract

Figure 3

Table 3

<table>
<thead>
<tr>
<th>Percentage Proximate Composition</th>
<th>Percentage Phytochemical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>Protein</td>
</tr>
<tr>
<td>15.7±2</td>
<td>6.7±2</td>
</tr>
</tbody>
</table>

Data represents mean ± SEM n=3

Proximate composition analysis revealed the presence of carbohydrates, proteins, fat and fibre.

Phytochemical analysis revealed the presence of alkaloids, flavonoids, saponins, tannins and phenols.

Figure 4

Table 4

<table>
<thead>
<tr>
<th>Vitamins (mg/100g)</th>
<th>Minerals (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>11.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Micronutrient Composition of Anacardium occidentale Linn stem-bark extract

Data represent mean ± SEM n=3

Vitamins A, B and C were found to be present in the extract

Minerals found plant extract include Na⁺, K⁺, Ca²⁺, Mg²⁺, P, Fe, Cu and Se

DISCUSSION

The hydroethanolic extract of Anacardium occidentale Linn stem-bark was evaluated for possible presence of anti-diabetic components.

The effect of this plant extract on fasting blood glucose was evaluated using a glucometer. The extract was found to restore normal glycaemia. Hyperglycaemia per se does not cause diabetic complications. It is rather the detrimental effect of glucose toxicity due to chronic hyperglycaemia, which is mediated and complicated through oxidative stress (Tiwari and Rao, 2002)

Oxidative stress is responsible for molecular and cellular tissue damage in a wide spectrum of human diseases (Halliwell, 1994). Oxidative stress is present in type 1 diabetes (Cerelli et al., 1991) due to several mechanisms, including glucose auto-oxidation and non-enzymatic protein glycation (Sakurai and Tsuchiya, 1988; Wolf, 1993). Supportive therapy aimed at oxidative stress may help to prevent clinical complications in diabetic patients. Induction of diabetes using streptozotocin results in the generation of reactive oxygen species (Mazunder et al., 2005). The medicinal value of plants lies in some chemical substances that produce a definite physiological action on the human body. The most important of these bioactive constituents of plants are alkaloids, tannins, flavonoids and phenolic compounds (Hills, 1952)

Anti-diabetic properties and the body weight changes observed in the animals with administration of Anacardium occidentale L. stem-bark extract may be due to the presence of some micronutrients, some secondary metabolites and some food substances in it.

Flavonoids, alkaloids and saponins which are present in Anacardium occidentale L. stem-bark have been documented to have anti-oxidant effects (Olaleye et al., 2007) blood glucose reduction effect (Bolkent et al., 2000; Diatewa et al., 2004) and enhance natural resistance and recuperative powers of the body (Singh et al., 1991). People with uncontrolled diabetes are prone to develop deficiencies in some minerals, notably potassium, magnesium and zinc (Mooradian et al., 1994; Mooradian 1999) and this may predispose to carbohydrate intolerance (Chehade et al., 2009). The presence of some minerals in the plant extract is a good micronutrient supplement because they will help in modulating the immune system and pancreatic insulin secretion and action (Holick, 2007 and Rosen, 2005)

Several micronutrients present in Anacardium occidentale Linn stem-bark have potent antioxidant properties. These include Vitamin C, selenium, Vitamin A and B, which has also been documented to preserve beta cells mass (Visalli et al., 1999)

Studies are replete supporting significant weight reductions in untreated diabetic rat models (Nwanjo, 2005; Atangwo et al., 2007; Ahmed et al., 2005 and Kechrid and Bouzela, 2004). This was also the case in this study. In the treated diabetic group however, weight gain was similar to the
negative control group which suggest a relationship between
glycaemic control and weight gain. The herb has an
antihyperglycaemic effect and the groups that achieved
euglycaemia also had an improvement in their weight gain.

In conclusion, Anacardium occidentale L. stem-bark extract
has antihyperglycaemic property and positive effect on
weight gain and these actions may be attributed to the
multiple physiological effects of the micronutrient and
phytochemical composition of the herb.

References
r-0. Abdel MA, El Feki M, Salah E: Effect of Nigella
Sativa, fish oil and Glicozide on alloxan diabetic rats, 1-
Biochemical and histopathological studies. J. Egy Ger Soci
Zool; 2001;23:237-265
r-1. Ahmed SM, Vrushabendra SBM, Gopkumar P,
Dhanapal R., Chandrashekar: Anti-diabetic activity of
Terminalia catappa Linn leaf extracts in alloxan-induced
diabetic rats. Iranian J. of pharmacol and therapeutics; 2005;
4(1): 38-39
r-2. AOAC: Official method of analysis of the Association
of Analytical chemists, Washington DC: 223-225
r-3. Atangwho JJ, Ebon SG, Etung MU, Uboh FE: Venonia
amygdalin Del. A potential prophylactic anti-
diabetic agent in lipids complication: Global J of Pure and
Applied Scs, 2007a 13(1): 103-106
r-4. Bhide MB and Aiman R: Mechanism of action of oral
r-5. Bolkent R, Yanarda A, Tabakolu-ouz O, Ozsoy-Sacan:
Effect of Chard (Beta Vulgaris L. Var. Cida) extract on
pancreatic beta cells in streptozotocin-diabetic rats. A
morphological and biochemical study. J. ethnopharmacol.
2000; 73(1-2): 251-259
r-6. Cetto AA, Weidonfeld H, Revilla MC, Sergio IA:
Hypoglycaemic effect of Equisetum mriochaetum aerial
r-7. Chakravarthy BK, Gupta S, Gambhir SS, Gode KD:
Pancreatic beta-cell regeneration – a novel antidiabetic
mechanism of piterocarpus marsupium. Roxb Indian J.
r-8. Chang MW and Johnson MA: Effect of garlic on
protein Analysis in Food Analysis. 3rd ed,
r-9. Chang: Protein Analysis in Food Analysis. 3rd ed,
r-10. Chehade JM, Sheikh-Ali M, Mooradian AD: The role
of micronutrients in managing diabetes. Diabetes spectrum,
1980; 110:931-936
r-11. Collier E, Watkinson A, Cleland CF, Roth J: Partial
morphological and biochemical study. J. ethnopharmacol.
129-133(s)
r-12. Diatewa M, Samba BC, Assah HCT, Abena AA:
Hypoglycaemic and anti-hyperglycaemic effect of diethyl
ether fraction isolated from the aqueous extract of the
leaves of cogniauxia podeleana Baillain in normal and alloxan-
JL, Garg A, Holzmeister LA, Hoogwer B, Mayer-Davis E,
Mooradian AD, Purnell JQ, Wheeler M: Evidence-based
nutrition principles and recommendations for the treatment
r-14. Halliwell B: Free radicals, antioxidants, and human
disease: cause or consequence? Lancet; 1994; 44: 721-724
r-15. James CS: Experimental Methods in Analytical
p28
r-16. Kechrid Z and Bouzema N: Effect of Zinc deficiency
and experimental diabetes on glutamate oxaloacetate,
glutamate pyruvate amino-transferases and alkaline
phosphatase activities in rats. Ind J Diabet and Metab; 2004;
11: 14-18
r-17. Kirk and Sawyer: Pearson’s Food Composition and
Analysis 1989
r-18. Marles RJ and Farnsworth NR: Antidiabetic plants and
their active constituents. Phytomedicine; 1995;2:137-189
2002; 295:585-589
r-20. Mazunder UK, Gupta M, Rajeshwary Y: Anti-
hyperglycaemic effect and antioxidant potential of
phyllantus nuriri (Euphorbiaceae) in streptozotocin induced
.©2001 MCB University Press, Ltd. All rights reserved.
r-21. Moller DE and Fillier JS: insulin resistance:
1991; 325: 939-948
r-22. Mooradian AD: Micronutrients in diabetes mellitus in
Drugs, Diet and Disease edited by Ioannides C, Flatt PR,
Hemel Hempstead U.K, Ellis Horwood; 1999: 183-200
r-23. Mooradian AD, Failla M, Hoogwer B, Maryniuk M,
Wylie-Rose J, Selected vitamins and minerals in diabetes.
Diabetes Care; 1994;17: 464-479
Bottoms: Effects of dietary fibre supplementation on
glycaemic control in drugs with alloxan-induced diabetes
r-25. Nwanjo HU: Free radicals scavenging potential of the
aqueous extract of viscum album (mistletoe) leaves in
diabetic wistar rats hepatocytes. Internet J Nutr Wellness;
2007:3(2)
.©2001 MCB University Press, Ltd. All rights reserved.
r-26. Olaleye MT, Kolawole AO, Ajie JO: Antioxidant
properties and Glutathione S-Transferases inhibiting activity.
A Cordifolia leaf extract in Acetaminophen-induced liver
Med;2005; 353: 595-603
r-28. Sakurai T and Tsuchiya S: Superoxide production from
nonenzymatically glycation protein . FEBS lett;1988; 236:
406-410
r-29. Shammugasundaram ER, Goplih KL, Radha SK,
Rajendran VM: Possible regeneration of the islets of
Langerhans in streptozotocin-diabetic rats given Gymnema
evaluation of some antistress agents of plant origin. Ind J
Pharmac; 1991; 21: 99
r-31. Tiedge M, Lortz S, Drinkgern J, Lenzen S: Relation
between antioxidant enzyme gene expression and
hyperglycaemic effect and the groups that achieved
euglycaemia also had an improvement in their weight gain.

Author Information

C.F. Eliakim-Ikechukwu, M.BB.Ch; M.Sc
Department of Anatomy University of Calabar Calabar, Nigeria

A.I. Obri, BSc.
Department of Anatomy University of Calabar Calabar, Nigeria

OA Akpa, M.Sc; M.BB.Ch
Department of Anatomy University of Calabar Calabar, Nigeria