Anthropometric characteristics and nutritional status of rural school children
K Bose, S Bisai, S Mukherjee

INTRODUCTION
Undernutrition continues to be a primary cause of ill-health and premature mortality among children in developing countries. Undernutrition among children is prevalent in almost all the states in India. The children living in rural areas of India disproportionately suffer from undernutrition compared with their urban counterparts. Although several recent studies have studied the problem of undernutrition among rural children in different parts of India, there is a scanty information regarding undernutrition among rural children of Bankura District, West Bengal.

Three commonly used indicators of undernutrition among children are stunting (low height for age), thinness (low body mass index for age) and underweight (low weight for age). Stunting is an indicator of chronic undernutrition, the result of prolonged food deprivation and/or disease or illness; thinness is an indicator of acute undernutrition, the result of more recent food deprivation or illness; underweight is used as a composite indicator to reflect both acute and chronic undernutrition, although it cannot distinguish between them. In view of this, the present investigation assessed the prevalence of undernutrition among 6-14 year old rural school children of Onda, Bankura District, West Bengal, India.

MATERIALS AND METHODS
STUDY AREA AND SUBJECTS
This cross sectional study was carried out (during the period of December 2006 to May 2007) at 7 primary and secondary schools in Onda, Bankura District, West Bengal, India. Onda is a rural area about 20 kms from Bankura town, the district capital of Bankura District. It is 177 kms from Kolkata, the provincial capital of West Bengal. All 6-14 years old students enrolled at these schools were invited to participate.
Anthropometric characteristics and nutritional status of rural school children

in this study. The response rate was 91%. Information on ethnicity and age of all subjects were obtained from questionnaires and verified from school records. The completion of questionnaires and measurement of subjects were done during school working hours.

Permission for the study was obtained from the school authorities prior to commencement of the study. Ethical permission was also obtained from Vidyasagar University authorities. The sample size of the study was 454 (201 boys and 253 girls). The age range of the subjects was 6-14 years. The samples were classified into 9 age groups by one-year interval. The vast majority (n = 451) of the students were Bengalee Hindus.

ANTHROPOMETRIC MEASUREMENTS

Height and weight measurements were taken by one observer (SM) following the standard techniques. These were recorded with the subject wearing minimal clothing, to the nearest 0.1 cm and 0.5 kg., respectively. Technical errors of measurement (TEM) were calculated and they were found to be within reference values.

The body mass index (BMI) was computed following the standard formula:

\[\text{BMI} = \frac{\text{Weight (kg)}}{\text{Height}^2 (\text{m}^2)} \]

EVALUATION OF NUTRITIONAL STATUS

Three commonly used undernutrition indicators, i.e., underweight, stunting and thinness were used to evaluate the nutritional status of the subjects. The United States National Centre for Health Statistics (NCHS) age and sex specific – 2 z-scores were followed to define underweight, stunting and thinness. The following scheme was utilized:

Underweight : < - 2 WAZ (Z-score for weight-for-age)
Stunting : < - 2 HAZ (Z-score for height-for-age)
Thinness : < - 2 BMIZ (Z-score for BMI-for-age)

where WAZ, HAZ and BMIZ to height-for-age, weight-for-age and BMI- for- age, age and sex specific z scores, respectively, of NCHS.

The WHO classification (Table 1) was followed for assessing severity of malnutrition by percentage prevalence ranges of these three indicators among children.

Figure 1
Table 1: WHO classification of severity of malnutrition.

<table>
<thead>
<tr>
<th></th>
<th>Low (%)</th>
<th>Medium (%)</th>
<th>High (%)</th>
<th>Very High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 10</td>
<td>10 -19</td>
<td>20 -29</td>
<td>> 29</td>
</tr>
<tr>
<td>Stunting</td>
<td>< 20</td>
<td>20 -29</td>
<td>30 -39</td>
<td>> 40</td>
</tr>
<tr>
<td>Thinness</td>
<td>< 5</td>
<td>5 -9</td>
<td>10 -14</td>
<td>> 15</td>
</tr>
</tbody>
</table>

STATISTICAL ANALYSES

The distributions of height and weight were not significantly skewed therefore not necessitating their normalization. Technical errors of measurements (TEM) were found to be within reference values and thus not incorporated in statistical analyses. Between sexes differences in means of height and weight were tested by students t-test. Statistical significant was considered at p value < 0.05.

RESULTS

Details age and sex wise distribution of the study sample are given in Table 2.

Figure 2
Table 2: Age-sex distribution of study population.

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Boys (n)</th>
<th>Girls (n)</th>
<th>Total (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>22</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>23</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>29</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>253</td>
<td>454</td>
</tr>
</tbody>
</table>

The age-wise means and standard deviations of weight, height and BMI, in both sexes, are presented in Table 3. There were no significant sex differences in mean weight and BMI. There were significant (p < 0.05) sex differences in mean height at ages 10 (t = 2.19) and 12 (t = 3.11) years.
Table 3: Age and sex-specific mean weight (kg), height (cm) and BMI (kg/m²) of the children.

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>BMI (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boys</td>
<td>Girls</td>
<td>Boys</td>
</tr>
<tr>
<td>6</td>
<td>10.6 (1.1)</td>
<td>17.9 (0.6)</td>
<td>115.1 (1)</td>
</tr>
<tr>
<td>7</td>
<td>10.6 (1.9)</td>
<td>18.3 (0.70)</td>
<td>116.2 (1.6)</td>
</tr>
<tr>
<td>8</td>
<td>21.6 (2.7)</td>
<td>21.2 (0.40)</td>
<td>121.8 (6.4)</td>
</tr>
<tr>
<td>9</td>
<td>23.7 (3.3)</td>
<td>23.5 (0.21)</td>
<td>137.5 (7.5)</td>
</tr>
<tr>
<td>10</td>
<td>34.3 (5.5)</td>
<td>28.1 (1.36)</td>
<td>137.4 (1.2)</td>
</tr>
<tr>
<td>11</td>
<td>28.1 (3.9)</td>
<td>27.1 (0.67)</td>
<td>131.3 (6.3)</td>
</tr>
<tr>
<td>12</td>
<td>31.2 (4.8)</td>
<td>22.4 (0.22)</td>
<td>137.1 (7.8)</td>
</tr>
<tr>
<td>13</td>
<td>36.6 (5.8)</td>
<td>27.2 (0.54)</td>
<td>147.6 (11.0)</td>
</tr>
<tr>
<td>14</td>
<td>38.5 (7.1)</td>
<td>36.5 (0.67)</td>
<td>151.9 (10.0)</td>
</tr>
</tbody>
</table>

Table 4 presents the mean WAZ, HAZ and BMIZ. Mean z-scores had negative values in both boys as well as girls. The overall (sex combined) mean (sd) WAZ, HAZ and BMIZ were -1.09 (0.95), -0.79 (1.28) and -1.26 (1.17), respectively. The mean z-scores ranged from –1.29 (BMIZ, boys) to –0.77 (girls, HAZ).

Table 5 presents the prevalence underweight, stunting and thinness by age and sex. The overall age and sex combined prevalence of underweight, stunting and thinness were 16.9%, 17.2% and 23.1%, respectively. According to the WHO, public health problem of undernutrition among children, these rates were medium (10-19%), low (< 20%) and very high (15%), respectively. Among boys, underweight was high (20.9%) while thinness was very high (27.8%). In case of girls, underweight was medium (13.8%) while thinness was very high (19.4%). Both sexes had low (< 20%) rates of stunting.
DISCUSSION

Improved child health and survival are considered universal humanitarian goals. In this respect, understanding the nutritional status of children has far-reaching implications for the better development of future generations. However, reports have stated that child malnutrition has risen in recent years in India. Malnutrition continues to be a problem of considerable magnitude in most developing countries of the world. Several studies have shown that dietary and environmental constraints are the major determinants of differences in growth performance between children of developing and developed countries. In the present study, the overall age and sex combined prevalence of underweight, stunting and thinness were 16.9%, 17.2% and 23.1%, respectively. Both sexes had similar rates of stunting but significantly more boys were underweight and thin. According to the WHO classification of severity of malnutrition among children, the overall age and sex combined rates of underweight, stunting and thinness were medium, low and very high, respectively. The rates of undernutrition in the present study were lower than those reported among similar aged school children of tea workers of Chhattisgarh, central India. While stunting reflects a failure to reach linear growth potential due to sub optimal health and/or nutritional conditions, underweight reveals low body mass relative to chronological age, which is influenced by both, a child's height and weight. Underweight thus cannot distinguish between a child that is small in weight relative to his/her height and a child that is low in height relative to his/her age, but who may be normal in weight-for-height. On the other hand, thinness is an indicator of acute undernutrition, the results of more recent food deprivation.

In conclusion, this study provided evidence that these children were under acute and chronic nutritional stress indicating the requirement of immediate appropriate public health nutritional intervention programmes. This has important implications for public health policy-makers, planners and organizations seeking to meet national and international development targets. However, it must be noted here that the conclusion drawn may not be applicable for all districts of India but to a certain extent, it may be true for West Bengal State.

ACKNOWLEDGEMENTS

All subjects who participated in the study are thanked. The authors also express their grateful thanks to the school authorities for their help and cooperation.

REFERENCES

Author Information

Kaushik Bose, Ph.D.
Department of Anthropology, Vidyasagar University

Samiran Bisai, M.Sc.
Department of Anthropology, Vidyasagar University

Soma Mukherjee, M.Sc.
Department of Anthropology, Vidyasagar University