Educational Software For Teaching: Neuromonitoring In Anesthesia And Critical Care

G Schwarz, G Litscher, R Grims

Citation

Abstract
NEURALIS is a specific interactive, multiple-choice educational software package for neuromonitoring in anesthesia and critical care. The system runs on Windows 95, 98 or NT 4.0. The system is based on a databank consisting of a presentation module and a question-answer module. Both components contain texts, diagrams and bit maps. The contents are organized in six categories for users to assess their knowledge. The question blocks contain a variable redundancy mechanism and the individual questions can be configured in an increasing order or randomly.

NEURALIS was evaluated by 108 participants at three international postgraduate workshops for neuromonitoring. On a scale of one to five (1 = excellent, 5 = poor), the average score was 1.13. This indicates a very good acceptance of this educational tool by users.

INTRODUCTION
The use of computer-assisted learning is increasing rapidly in undergraduate and postgraduate medical education. NEURALIS, developed in 1995 and updated regularly, is one of the first comprehensive medical educational software packages. It was developed with a multiple-choice mode for postgraduate training in neuromonitoring in anesthesia and critical care and is also being used for training medical students.

METHODS
NEURALIS was developed with the CBT tool BD EXPERT to run on Windows 95, 98 or NT 4.0. The educational objectives are organized in blocks on electrophysiology in anesthesia and critical care, electroencephalography, evoked potentials and technical and clinical methods.

With automatic statistical evaluation, both the student and the teacher can evaluate the answers to individual questions as well as knowledge in the different subject blocks. Then a training program can be planned. In the question module the user can chose an adaptable redundancy mechanism and an increasingly consistent question mechanism as well as a subject-oriented or random query mode. The answer module contains a correct-incorrect evaluation as well as an evaluation compartment. The system can be expanded with animations and video clips.

To evaluate the acceptance of NEURALIS as a postgraduate teaching tool, the system was evaluated by 108 anesthesiologists, critical care specialists and biomedical engineers on a five point scale

(1 = excellent, 2 = good, 3 = satisfactory, 4 = fair, 5 = poor).

RESULTS
The following figures are examples from the question – answer module from different subject groups.

Fig 1 a,b – 4 a,b: NEURALIS-examples.
Figure 1

Anesthesia

Which anesthetic agent leads to an increased amplitude of cortical somatosensory evoked responses?

- Propofol
- Etomidate
- Thiopental
- Midazolam

Figure 2

SSEP

cervical cortical

ANSWER CORRECT

Etomidate

Figure 3

VEP

At which VEP scalp distribution is the patient in a deep coma (GCS 3)?

- VEP preserved in the occipital lead
- VEP preserved over the vertex

Figure 4

ANSWER INCORRECT

In a deep coma VEP is preserved in the occipital lead and absent over the vertex and in the remaining leads.

Figure 5

Intensive Care

Which electrical signals in the brain can be absent in patients with isolated brainstem death? (multiple answers possible)

- EEG
- BAEP
- Cortical SSEP
- VEP

Figure 6

ANSWER INCORRECT

Cortical somatosensory evoked potentials and brainstem auditory evoked potentials are absent in isolated brainstem death (see figure) because the respective pathways in the brainstem can be interrupted.
DISCUSSION

Technological advances have been quickly translated into educational tools. These range from an electronically-controlled, pneumatically-driven pulse simulator in cadavers for teaching peripheral nerve block techniques [1] to human patient simulators [3]. Manufacturers provide a range of product information software for neuromonitoring equipment [3,4,5]. In contrast, there are comparatively few commercially available software products for the specialized and complex subject matter of electrophysiology for anesthesia and critical care, e.g. [6]. We developed an interactive multimodal expert system called BRAINDEX for computer-assisted documentation and decision support for brain death [6], which includes various topics of neuromonitoring in brain death, too.

We have used NEURALIS since 1995 and presented the system in 1997 [8]. The system has been updated repeatedly to keep pace with advances in neuromonitoring and has been used with high acceptance (Fig. 5) in postgraduate training [http://www.anaesth.med.tu-muenchen.de/neuro.html] as well as in the education of medical students. Up to now the software is only designed for german language and is used as a part of the postgraduate training. It is not commercially available at the moment.

References
Author Information

Gerhard Schwarz, M.D.
Department of Anesthesiology and Critical Care, University of Graz

Gerhard Litscher, Ph.D.
Department of Anesthesiology and Critical Care, University of Graz

Robert Grims, M.D.
Educational and Medical Software (R.G.)