Impact of socio-demographic and economic factors on the prevalence of intestinal parasites among the female gender in Makurdi, Benue State-Nigeria

E Amuta, R Houmsou, S Mker

Abstract
Intestinal parasites are regarded as important public health problems in tropical Africa and cause malnutrition, diarrhea and anaemia in humans. A study was undertaken to determine the impact of socio-demographic and economic factors on the prevalence of intestinal parasites among women in Makurdi, Benue State-Nigeria. Using formol ether concentration technique to process the faeces, an infection rate of 426 (56.80%) was recorded out of the 750 women examined. Five parasite species were found: Entamoeba coli 28.48%, Entamoeba histolytica 22.00% and Ascaris lumbricoides 17.20%. The peak prevalence of 75.00% was observed among women with no level of education, those that had primary and secondary level of education recorded 73.13% and 66.66% respectively, no significant difference was observed between infection rate and level of education ($X^2 = 85.93$, $P > 0.05$). An infection rate of 68.60% was observed among female students. Traders, housewives and farmers recorded 65.50%, 64.50% and 60.00% respectively, there was no significant difference between the occupation of the women and prevalence of infection ($X^2 = 32.30$, $P > 0.05$). It is recommended that government should enforce many of the docile environmental laws in order to make people live in healthy environments and observe hygiene rules which are necessary for good health and longevity.

INTRODUCTION
Intestinal parasites are regarded as important public health problems in tropical Africa and cause malnutrition, diarrhea and anaemia in humans. They are among the most prevalent human infections affecting approximately one fourth of the world’s population. In the developing world, young women, pregnant women, their infants and children frequently experience a cycle where repeated infection lead to adverse consequences that can continue from one generation to next. However, the role of women in any society can not be overemphasized.

In Nigeria, women make up more than one third of the work force, comprising 70% of agricultural workers, 80% of food producers, 95% of those who process basic food stuff and 60-90% of those marketing. It is in the course of performing these duties, including domestic house obligations that contact with infective stages of most parasites occur. Early reporting of infections is also hampered by illiteracy, ignorance, weak economic power and poor health facilities. Thus, this study centers on intestinal parasitic infections and their effects on the female gender. The main objective was to determine the prevalence of intestinal parasites among women at different reproductive stages and the impact of related factors such as socio-demographic and economic factors that can influence the prevalence of these parasites.

MATERIALS AND METHODS
STUDY AREA
The study was carried out in Makurdi, capital of Benue State-Nigeria. Makurdi is located at the North Eastern part of Benue State and lies on latitude 7º30’N and longitude 8º35’E. It shares boundaries with Gwer West and Guma Local Government Areas including Nassarawa State.

The town is divided by the River Benue into the North and South banks, which are connected by two bridges: the railway bridge and the dual carriage bridge. The southern part of the town is made up of several wards including Central Ward, Old GRA, Ankpa Ward, Wadata Ward, High Level, Wurukum and new GRA.
Makurdi lies in the tropical guinea savanna zone of Central Nigeria, experiences a typical climate with two distinct seasons. The dry season lasts from late October to March and the rainy season which begins in April to October is the period of intensive agricultural activities by the inhabitants mostly Tivs, Idomas, Jukuns and Igedes. The area has an annual rainfall of 1000 mm and temperature fluctuates between a minimum of 27º,38 C to 28º,00 C and a maximum of 30º,10 C to 34º,09 C (Meteorological Department, Nigerian Airforce Base Makurdi, Unpub. Data).

STUDY POPULATION AND PARASITOLOGICAL EXAMINATIONS

This study focused on women at different reproductive stages (pre-menstruals, menstrual and post-menstruals). A total of 750 females aged 5-70 years were randomly selected, individual consent of each adult woman that participated in the study was sought. For school children permission was obtained from the school authorities and parents of the respective students were duly informed on the significance of the study before the start of the research. Each participant was given a sterile and labeled bottle for stool collection and questionnaires were also administered to obtain information on socio-demographic and socio-economic data.

Stool specimens were examined for parasites eggs, cysts and larvae using formol ether concentration technique as described5.

STATISTICAL ANALYSIS

Data were analyzed by SPSS for Windows 15.0 version. Chi-squared test was performed to assess the significant association between the prevalence of intestinal parasites and socio-demographic and socio-economic factors.

RESULT

Five parasites species were found among women in the study area, Figure 1 illustrates the prevalence of individual parasites among women groups. The pre-menstrual group recorded the highest infection rate with Entamoeba coli 71 (28.4%), Entamoeba histolytica 55 (22.0%), Ascaris lumbricoides 43 (17.2%), Taenia sp was not found but recorded a prevalence of 11 (3.7%) among the menstrual group. There were no significant differences in the prevalence of intestinal parasites among women at different reproductive stages ($X^2 = 23.1, P > 0.05$).

The prevalence of intestinal parasites in relation to educational status is given in Table 1. Women with no level of education recorded the peak of infection with 75%, followed by those that have primary and secondary level of education recording prevalence rates of 73.13% and 66.66% respectively. The least infection of 23.91% was found among those that attended a tertiary institution. Women at post-menstrual and pre-menstrual stages recorded the highest infection rate with 63.86% and 72.80%) respectively. No significant difference was observed between the prevalence rate and the educational status of women ($X^2 = 85.93, P > 0.05$).

Table 1: Prevalence of intestinal parasites in women in relation to educational status

```
<table>
<thead>
<tr>
<th>Educational</th>
<th>Exam</th>
<th>Inf (%)</th>
<th>Exam</th>
<th>Inf (%)</th>
<th>Exam</th>
<th>Inf (%)</th>
<th>Exam</th>
<th>Inf (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>12</td>
<td>9.75</td>
</tr>
<tr>
<td>Primary</td>
<td>250</td>
<td>182(72.8)</td>
<td>24</td>
<td>19(79.16)</td>
<td>87</td>
<td>63(72.41)</td>
<td>301</td>
<td>264(87.31)</td>
</tr>
<tr>
<td>Secondary</td>
<td>0</td>
<td>0.00</td>
<td>108</td>
<td>67(62.03)</td>
<td>39</td>
<td>31(79.48)</td>
<td>147</td>
<td>96(66.66)</td>
</tr>
<tr>
<td>Tertiary</td>
<td>0</td>
<td>0.00</td>
<td>166</td>
<td>20(12.16)</td>
<td>61</td>
<td>20(32.82)</td>
<td>230</td>
<td>55(23.91)</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>182(72.8)</td>
<td>208</td>
<td>115(56.99)</td>
<td>202</td>
<td>130(64.51)</td>
<td>750</td>
<td>426(56.80)</td>
</tr>
</tbody>
</table>
```

($X^2 = 85.93, P > 0.05$).

Table 2 illustrates the prevalence of intestinal parasites in relation to occupation of women. Students recorded a higher rate of infection with 68.60%) followed by trader 65.50%, housewives 64.50%, farmers 60.00%. The least infection
rate was found among civil servants 20.50%. There was not significant difference in the prevalence of infection and occupation of women (X2 = 130.63, P > 0.05).

Figure 3

Table 2: Prevalence of intestinal parasites in women in relation to occupation

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Pre-menstrual</th>
<th>Menstrual</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exam</td>
<td>Inf(%)</td>
<td>Exam</td>
</tr>
<tr>
<td>Student</td>
<td>250</td>
<td>182(72.80)</td>
<td>62</td>
</tr>
<tr>
<td>Civil servant</td>
<td>0</td>
<td>0(0.00)</td>
<td>34</td>
</tr>
<tr>
<td>Teacher</td>
<td>0</td>
<td>0(0.00)</td>
<td>57</td>
</tr>
<tr>
<td>Trader</td>
<td>0</td>
<td>0(0.00)</td>
<td>51</td>
</tr>
<tr>
<td>Tailor</td>
<td>0</td>
<td>0(0.00)</td>
<td>29</td>
</tr>
<tr>
<td>Farmer</td>
<td>0</td>
<td>0(0.00)</td>
<td>42</td>
</tr>
<tr>
<td>Housewife</td>
<td>0</td>
<td>0(0.00)</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>182(72.80)</td>
<td>298</td>
</tr>
</tbody>
</table>

(X2 = 32.30, P > 0.05)

The prevalence of intestinal parasites among women in relation to location is shown in Table 3. Girls and women who reside at North-Bank had the highest infection rate with 69.50%, followed by women residing at Wadata 57.60% and Modern Market 56.00%. The least infection rate was encountered among women residing at Wurukum 52.70%. No significant difference was observed in the prevalence of intestinal parasites in women in relation to location (X2 = 32.3, P > 0.05).

Figure 4

Table 3: Prevalence of intestinal parasites in women in relation to location

<table>
<thead>
<tr>
<th>Location</th>
<th>Pre-menstrual</th>
<th>Menstrual</th>
<th>Post-menstrual</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exam</td>
<td>Inf(%)</td>
<td>Exam</td>
<td>Inf(%)</td>
</tr>
<tr>
<td>North Bank</td>
<td>22</td>
<td>16(72.70)</td>
<td>38</td>
<td>27(71.05)</td>
</tr>
<tr>
<td>Wurukum</td>
<td>24</td>
<td>28(71.79)</td>
<td>54</td>
<td>41(76.78)</td>
</tr>
<tr>
<td>High Level</td>
<td>93</td>
<td>68(73.10)</td>
<td>134</td>
<td>103(76.69)</td>
</tr>
<tr>
<td>Wadata</td>
<td>60</td>
<td>46(76.67)</td>
<td>82</td>
<td>53(64.63)</td>
</tr>
<tr>
<td>Modern</td>
<td>34</td>
<td>28(82.35)</td>
<td>21</td>
<td>8(38.10)</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>182(72.80)</td>
<td>298</td>
<td>115(38.60)</td>
</tr>
</tbody>
</table>

(X2 = 22.90, P > 0.05)

DISCUSSION

The present study reveals a relatively high infection rate of intestinal parasitosis among women in Makurdi, Benue State-Nigeria. However, these findings are closely related to 51.60 %, 52.62% and 57.70% of urban areas found in Benin Republic, Senegal and Chad respectively 6, 7, 8 The protozoans Entamoeba histolytica and Entamoeba coli were observed having high rates of infection among pre-menstruals and post-menstruals with 18.90% and 21.60% respectively. These parasites are often associated with waterborne transmission; the very deplorable state of potable drinking water in the town should be to a great extent responsible to the highest number of infection encountered. While engaged in domestic chores, these women are more predisposed to contaminated water bought from water vendors who sometimes fetch water from broken pipes, running surface or directly from the River Benue. Infection could also come from contaminated well water in the household on which most of the families depend. The consumption of unwashed fruits or contact with vegetables in the market could also lead to infection. Sometimes these fruits are brought from remotest areas of the state where hygienic precautions are not taken during the plucking, packaging and transportation of the fruits. However, vegetables consumed are mostly farmed along the river banks during the dry season and are directly watered from the river without any form of water treatment thus could definitely lead to the contamination of the crops by these parasites. This study is similar to the infection rate of Entamoeba histolytica (29.47%) observed in N'Djamena.
capital of Chad Republic among the female gender 9.

With regards to the level of education, the post-menstrual women with no level of education (Nil) had the highest number of infection (75%). This could be due the low level of hygiene consciousness due to illiteracy. The low rate of infection observed among women that have attended a tertiary institution might be due to the fact they are more often enlightened and economically stable.

The relationship between occupation and prevalence of infection showed that students were more infected. This high rate of infection in this category might be attributable to the constant contact of these students with contaminated soil, water or food. However, this study corroborates the affirmation that school children are found to be spending more of their leisure time out doors, playing or foraging in garbage dumps and eating discarded foods remains on the street, and are more often in contact with soil and eat indiscriminately with unwashed hands10.

In relation to location, females living at North-Bank and Wadata are more infected. These are high densities areas populated by mainly fishermen, farmers, traders, crafty men and women who live with unsanitary conditions such as lack of sanitation facilities especially latrines and lack of potable drinking water; the presence of stagnant water in gutters and dump hills that are common sights could be the sources of contamination in these areas. This, however, agrees with a study carried in Makurdi 11.

CONCLUSION AND RECOMMENDATIONS

Considering this devastating effects of these parasites on humans, it is stated that transmission of these parasites are facilitated by eating raw or undercooked food, unwashed fruits or vegetables12. The situation is made worst by the increasing world population and the environmental pollution, the inability to keep pace with provision of adequate drinking water and sanitation of the immediate environment. In order to find a way out of this public health nuisance, there is a need to educate the general populace on the urgency to stop these unhealthy behaviours. The government needs to enforce many of the docile environmental laws in order to make people live in healthy environments and observe hygiene rules which are necessary for good health and longevity.

ACKNOWLEDGEMENTS

The authors sincerely acknowledge all women that participated in this study. Thanks are also due to the heads, teachers and children of the female gender in the respective schools where samplings were undertaken.

References

Impact of socio-demographic and economic factors on the prevalence of intestinal parasites among the female gender in Makurdi, Benue State-Nigeria

Author Information

EU Amuta, PhD
Professor, Department of Biological Sciences, University of Agriculture, Makurdi, Benue State, Nigeria.

RS Houmsou, MSc
Department of Biological Sciences, University of Mkar, Mkar. Benue State, Nigeria.

SD Mker, BSc
Department of Biological Sciences, Benue State University, Nigeria