Carbon Monoxide Poisoning and SpO2: A Case Report
A Reddy, S Lasher, T Fuhrman

Citation

Abstract
A six year old patient undergoing surgery as the first case on a Monday morning had an unexplained fall in SpO2. The cause was found to be carbon monoxide toxicity due to the degradation of the volatile anesthetic by desiccated carbon dioxide absorbent. The diagnosis was confirmed by co-oximetry analysis of an arterial blood sample.

INTRODUCTION
The potential for carbon monoxide (CO) toxicity due to the degradation of volatile anesthetics by desiccated carbon dioxide absorbents is well known. Diagnosis of that entity is difficult unless it is suspected based on knowledge of the potential problem. We present a case of severe intraoperative CO poisoning where the diagnosis was suggested only by a moderate decrease in SpO2.

CASE REPORT
A 2yr old girl, weighing 16 kilograms; ASA physical status I, was anesthetized for an oral surgery procedure as the first case on a monday morning. Following mask induction with sevoflurane/nitrous/oxygen, a peripheral IV was placed. Neuromuscular blockade was established and the patient's trachea easily intubated. Maintenance of anesthesia was started with desflurane 8% and oxygen. Ten minutes after intubation, the patient's blood pressure decreased from a baseline of 90/35 to 65/15 mm/hg. Concurrently the SpO2 decreased from 100% to 98%. The blood pressure responded immediately to 10mcgs of phenylephrine IV and the desflurane level was reduced, however the SpO2 continued to fall to 89%. An immediate exploration for the cause failed to identify an obvious etiology. An arterial blood gas was drawn; results were a pH 7.43, PaCO2 31 and PaO2 498. Being aware of the potential for carbon monoxide production, a blood sample for co-oximetry evaluation had also been sent to the lab. The carboxyhemoglobin was 63%. The inhalational anesthetic was immediately changed to sevoflurane and CO2 absorbent replaced with fresh Baralyme. The patient's SpO2 gradually increased to 100%. Forty-five minutes after replacement of the Baralyme, an arterial sample was drawn for co-oximetry evaluation. This had a carboxyhemoglobin of 42%. After another forty-five minutes, the carboxyhemoglobin was 23%. Forty-five minutes later the co-oximetry value for carboxyhemoglobin (COHb) was 6%.

The duration of anesthesia was 180 minutes. The neuromuscular blockade was reversed and the patient emerged from anesthesia with no apparent sequelae. The patient remained in the Post Anesthesia Care Unit with routine monitoring for more than 2 hours. While further co-oximetry samples were not taken, the patient was able to maintain a SpO2 of 100% on room air for more than an hour after discontinuing supplemental oxygen. She was discharged home after her mother was informed and had received instructions regarding the carbon monoxide exposure during anesthesia. The mother was called the day after surgery and again four weeks later. She reported no abnormalities in the child's behavior or activity. Motor skills and her behavior were reported unchanged from prior to surgery.

DISCUSSION
Carbon monoxide (CO) production by the degradation of volatile anesthetics was initially reported by Fang and Eger in 1994 in the Anesthesia Patient Safety Foundation newsletter. Case reports followed. The awareness of this potential problem has reduced the incidence or at least the reported incidence of similar cases. However, knowledge of a potential problem and the ability to diagnose the problem may not be analogous. During our department's morbidity and mortality conference, the audience, was almost unanimous in thinking that CO was not the cause. The majority felt that CO does not have a significant effect on the pulse oximetry reading. One of the most severe case
of CO poisoning previously reported (COHb 36%) was
diagnosed mainly due to an erroneous gas analyzer
readings. In our case, the diagnosis of CO poisoning was
facilitated by a clinically significant decrease in SpO2. This
is consistent with animal studies done by Barker and
Tremper. Their work showed that SpO2 decreased with high
COHb concentrations. A COHb concentration of 70%
produced a SpO2 of 90%, (SpO2 = 99.3-(COHb x 0.1)).
This has also been noted by others. The reason for this can be explained by the difference
between pulse oximetry and co-oximetry. Both function
based on the principle of differential light absorbance. Pulse
oximetry employs two wavelengths of light, 940 nm and 660
nm. Oxyhemoglobin predominantly absorbs light at 940 nm
and reduced hemoglobin predominantly absorbs light at 660
nm. Using the relation of those differences, an algorithm
estimates the oxygen saturation. The presence of
carboxyhemoglobin can interfere with that analysis.
Carboxyhemoglobin (COHb) also absorbs light at 660 nm
but does not absorb at 940 nm. Meanwhile a co-oximeter
measures light absorbance at six or more discrete
wavelengths. Using these data and the known absorbance
spectra of the various hemoglobin species, the co-oximeter
calculates the concentration of each species and reports the
percentages of reduced, oxygenated, carboxyhemoglobin
and methemoglobin.

While knowledge has certainly minimized intraoperative
carbon monoxide poisoning, it is still a potential problem.
The pulse oximetry literature contains the information
necessary to deduce the diagnosis from the clinical signs and
situation, leading to obtaining appropriate blood analysis for
confirmation. However, most of the literature on the effect
doing. This effect is only minimal until the
carboxyhemoglobin concentration is well above a toxic
level.

CONCLUSION

In conclusion, even though the pulse oximeter overestimates
arterial Hemoglobin saturation, and hence is not a reliable
monitor to assess oxygenation of patients with CO
poisoning, one should definitely include CO poisoning in the
differential diagnosis of decreasing intraoperative SpO2.

CORRESPONDENCE TO

Thomas Fuhrman, MD Department of Anesthesiology
University of Kentucky 800 Rose Street Lexington, KY
40502-0293 Email: tmfuhr@uky.edu

References

1. Fang ZX, Eger EI. Source of toxic CO explained: -CHF2
anesthetic + dry absorbent. Anesthesia Patient Safety
2. Berry PD, Sessler DI, Larson MD. Severe Carbon
Monoxide Poisoning During Desflurane Anesthesia.
Anesthesiology 90:613-6, 1999.
WG. Notes on the apparent discordance of pulse oximetry
and multi-wavelength
Haemoglobin photometry. Acta Anaesthesiol Scand Suppl
4. Buckley RG, Akes SE, Eshom JL, Rydman R, Schaider J,
Shayne P, The Pulse
Oximetry Gap in Carbon Monoxide Intoxication. Ann
5. Barker SJ, Tremper KK. The Effect of Carbon Monoxide
Inhalation on Pulse Oximetry and Transcutaneous PO2.
6. Hampson NB. Pulse Oximetry in Severe Carbon
Monoxide Poisoning.
7. Vegfors M, Lenmarken C. Carboxyhaemoglobinemia
and Pulse Oximetry.
8. Raemer DB, Elliott WR, Topulos GP, Philip JH. The
Theoretical Effect of
Carboxyhemoglobin on the Pulse Oximeter. J Clin Monit
Author Information

Arundathi Reddy, M.B.B.S.
Assistant Professor, Department of Anesthesiology, University of Kentucky

Steven C. Lasher, M.D.
Assistant Professor, Department of Anesthesiology, University of Kentucky

Thomas M. Fuhrman, M.D., M.M.Sc, FCCM, FCCP
Professor of Anesthesiology, Department of Anesthesiology, University of Kentucky