Cervical spinous process fractures: The Spectrum Of Injuries

G Dickason, N Motsitsi

Citation

Abstract
Objective: To define the spectrum of injuries associated with cervical spinous process fractures as well as the management strategies.

Materials and Methods: retrospective study over a three- year period. A total of 17 patients were analysed. The male to female ratio: 8:1. The age range was 17 - 57 years. The mechanisms of injury were ; motor-vehicle accidents, fall from a height, gunshot injuries, and a falling wall.

Results: Most patients who had injuries were males. The lower cervical spine is the area most commonly involved. There was one case of isolated cervical spinous process involvement and one case of upper and lower cervical spine involvement. Sixteen patients had additional vertebral column involvement. About half of the patients had other body injuries. Five of the patients (29%) who had associated cervical spine injuries needed cervical fusion.

Conclusion: Spinous process fractures may be associated with other serious injuries. Thorough diagnostic work-up is mandatory in patients who sustained high-risk injuries. Spinous process fractures of the cervical spine may be one aspect of a serious injury.

INTRODUCTION
Fractures of the cervical spinous processes are relatively rare injuries. Isolated cervical spinous processes fractures are even rarer ; most reported cases are case reports. Sixteen percent of isolated spinous processes fractures of the cervical spine involve more than one level [5]. Isolated cervical spinous process fractures are commonly referred to as clay-shoveler's fractures: this is a misnomer.

X. Jordana et al. [11] defined a clay-shoveler's fracture as ‘an oblique , vertical break that affects the spinous processes from C6 to T3, but is most commonly found to involve C7, or both C7 and T1, and occasionally only T1’. It is a mechanical or repetitive stress fracture [4]. Occasionally, the fracture can be acute. They are generally considered stable injuries.

The purpose of this study is to define and analyze the spectrum of injuries associated with fractures of the cervical spinous processes and suggest management strategies.
Figure 1
Table 1: Demographic data, associated injuries, cervical spinous process fractures and management

<table>
<thead>
<tr>
<th>Position</th>
<th>Age</th>
<th>Sex</th>
<th>Associated Injuries</th>
<th>Fractures</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>M</td>
<td>Cervical instability</td>
<td>SF</td>
<td>N/A</td>
</tr>
</tbody>
</table>

DISCUSSION
Fractures of the cervical spinous processes signify severe injury. The majority of additional injuries involve the vertebral column: cervical spine (n = 10), base of skull (n = 3), cervico-thoracic (n = 2), cervico-lumbar (n = 2), lumbar (n = 1), and thoracic (n = 1). Approximately half of the patients had injuries involving the areas of the body other than the vertebral column. Isolated spinous process fractures of the cervical spine are relatively rare: 1/17 (5.9%) in our study. The number of vertebral spinous process involvement gives no clue as to the stability of the cervical spine.

There are currently four recognized mechanisms of injury that can cause fractures of the cervical spine processes [5,3]: hyperextension, hyperflexion, direct blow, and repetitive stress. Fractures of the spinous processes due to a direct blow to the back of the neck, may have associated laminar fractures [9]. These types of injuries may be unstable and present with delayed neurological deficits.

Spinous process fractures of the cervical spine are considered to be in the category of severe fracture-dislocations [9]. They may be one aspect of a significant injury. Thorough investigations is mandatory especially if the mechanism of injury is considered high-risk. However, some spinous process fractures are caused by low-energy injuries and almost invariably stable injuries [1,2,10]. These stable fractures may be symptomatic especially if there is non-union [10,7].

The limitations of our study are; it is a retrospective study, and the number of cases are few.

CONCLUSION
Fractures of the cervical spinous processes may represent...
serious injuries. The number of involved spinous process fractures gives no indication about the stability of the cervical spine. Isolated cervical spinous processes are rare injuries.

CORRESPONDING AUTHOR

N.S. Motsitsi: silas.motsitsi@up.ac.za. Phone: (+2712) 373 1011, Fax: =(+27)12 373 9031. Postal address: Private Bag x 396, Pretoria, South Africa 0001.

References

4. Iftach Hetsroni, Gideon Mann, Eran Dolev, David Morgenstem, and Meir Nyska (2005) Clay shoveler's fracture in a volleyball player. The physician and

Author Information

Graham Nelson Dickason, MBChB
Department of Orthopaedic Surgery, University of Pretoria

Nkosana Silas Motsitsi, M.MED F.C.S.
Department of Orthopaedic Surgery, University of Pretoria