In Vitro Antimicrobial Activity Of Various Extracts of Mirabilis jalapa Leaves

P Muthumani, P DEVI, R MEERA, B KAMESWARI, B ESWARAPRIYA

Abstract
The leaves of the plant Mirabilis jalapa were successively extracted with petroleum ether, benzene, chloroform, ethyl alcohol, methanol by soxhlet extractor and water extract by cold maceration. Disc diffusion method was employed to determine the effect of antibacterial potential against Gram positive of Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, gram negative of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and antifungal against Candida albicans. Methanol extract showed stronger and broader spectrum of microbial activity as compared to other extracts. Amikacin (10µg/ml) drug was used as the standard antibacterial agent.

INTRODUCTION
To a bacterium, the human body is a collection of environmental niches that provide the warmth, moisture, and food necessary for organism to grow. The bacteria have acquired genetic traits that enable them to enter the environment, remain in a niche, gain access to food sources, and escape clearance by host immune and non immune protective responses. Unfortunately, many of the mechanisms that bacteria use to maintain their niche and the by-products of bacterial growth are incompatible with the system of the human host. Many of these genetic traits are virulence factors, which enhance the ability of a bacterium to cause disease. Although most bacteria cause disease by directly destroying tissue, some release toxins, which are then disseminated by the blood to cause system-wide pathogenesis. Not all bacteria cause disease, but some always cause disease once infection occurs. The symptoms of a disease are determined by the function of the tissue affected, although systematic responses, produced by toxins and immune responses may also occur. The serious of the symptoms depends on the importance of the organ affected and the extent of the damage caused by the infection. The inoculums size is a major factor in determining whether disease occurs. However, this can vary from a relatively small inoculums (e.g. fewer than 200 Shigella for shigellosis) to a very large inoculums (e.g. 108 Vibrio cholerae).

MATERIAL AND METHODS
PLANT MATERIAL
Mirabilis jalapa was collected in Nagerkovil Dist of Tamilnadu. The voucher specimen has been deposited at the museum of the Dept. of Pharmacognosy, K. M. College of Pharmacy, Madurai and authenticated by a taxonomist.

PREPARATION OF EXTRACTS
The shade dried and powdered leaves were extracted successively with petroleum ether, benzene, chloroform, ethanol, methanol by soxhlet extractor and water extract by cold maceration.

Preliminary phytochemical investigation

The qualitative chemical test of various extracts of Mirabilis jalapa was carried out using standard procedure showed the
presence of glycosides, saponins, tannins.

Microorganisms used

Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis

Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae

Fungi: Candida albicans

Antimicrobial activity testing of disc-diffusion assay

Various extracts were dissolved in the same solvent to a final concentration of 30mg/ml and sterilized. Antimicrobial tests were then carried out by disc-diffusion method. The density of the bacterial suspension was standardized by using Mac Farland standard method. The discs were impregnated with 10µl of the extracts (300/disc) at the concentration of 30mg/ml and placed on the inoculated agar. Negative controls were prepared using the same solvents employed to dissolve the plant extracts. Ciprofloxacin 10µg/disc and Amphotericin B 100 units/disc were used as positive reference standards. The inoculated plates were incubated at 37°C for bacteria and 25°C for fungi (Monica Cheesbrough, 1985).

Micro dilution assay

The minimal inhibition concentration values were also studied for the microorganisms in disc-diffusion assay. The inoculums prepared from 12-hour broth cultures and suspensions were adjusted to 0.5 Mc Farland standard turbidity. The Mirabilis jalapa extract dissolved in 10% Dimethyl sulfoxide were first diluted to the highest concentration (500µg/ml) to be tested, and then serial two fold dilutions were made in a concentration range from 7.8-500µg/ml. The minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of Mirabilis jalapa extract against bacteria and minimum fungicidal concentration against C.albicans were determined based on a micro-well dilution method.

Disc diffusion assay

The antimicrobial activity of Mirabilis jalapa leaves extracts against microorganisms examined in the present study and their potency were quantitatively assessed by the presence or absence of inhibition zones and zone diameters, minimum inhibitory concentration and minimum bactericidal concentration values. All the extracts at concentration of 300µg/ml inhibited the growth of C.albicans. All extracts had inhibitory activity against gram positive and gram negative bacteria (Table 1) except petroleum ether extract.

Figure 1

Table 1. Antimicrobial activity of leaves of various extracts against the bacterial and fungal strains tested based on Disc-Diffusion method

<table>
<thead>
<tr>
<th>S.no</th>
<th>Plant Extract</th>
<th>Zone of inhibition (mm in diameter) at conc.300µg/disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Staphylococcus aureus</td>
<td>- 17 21 25 23</td>
</tr>
<tr>
<td>2</td>
<td>Staphylococcus epidermidis</td>
<td>- 16 19 22 20</td>
</tr>
<tr>
<td>3</td>
<td>Bacillus subtilis</td>
<td>- 16 20 21 23</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas aeruginosa</td>
<td>- 16 20 21 23</td>
</tr>
<tr>
<td>5</td>
<td>Klebsiella pneumoniae</td>
<td>- 16 20 21 23</td>
</tr>
<tr>
<td>6</td>
<td>Escherichia coli</td>
<td>- 18 13 23 20</td>
</tr>
<tr>
<td>7</td>
<td>Candida albicans</td>
<td>- 13 13 23 16</td>
</tr>
</tbody>
</table>

Minimum inhibitory concentration (Table 2)

MIC of Mirabilis jalapa was as low as 18µg/ml against E. coli. The concentration was at 27µg/ml for Bacillus subtilis, 33µg/ml Klebsiella pneumoniae, Mirabilis jalapa at concentration of 20µg/ml inhibited the growth of Staphylococcus aureus, Staphylococcus epidermis 21µg/ml, Pseudomonas aeruginosa 27µg/ml and 30µg/ml for C.albicans.

Minimum Bactericidal and Fungicidal Concentration (Table 2)

The bactericidal and fungicidal maximum concentration of Mirabilis jalapa is 37µg/ml for Staphylococcus aureus, 39µg/ml Staphylococcus epidermis, Pseudomonas aeruginosa 36µg/ml, 36 µg/ml for C.albicans, 33µg/ml for Bacillus subtilis, Klebsiella pneumoniae 36µg/ml and for E.coli 35µg/ml.
Figure 2
Table 2. The MBC and MIC values of leaves of various extracts against the bacterial and fungal strains tested in Microdilution Assay

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Chloroform</th>
<th>Methanol</th>
<th>Aqueous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MBC</td>
<td>MIC</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>29</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>21</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>30</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>27</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>32</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>33</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>30</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

MBC, MFC and MIC concentration in mg/ml

RESULTS AND DISCUSSION

Result reveal that various extracts of Mirabilis jalapa leaves were significantly effect against Gram positive, gram negative and anti fungal, where as significant activity was not observed with petroleum ether extract (Table 1). Minimum inhibitory and minimum bactericidal concentration of the active extract shown in Table (2). Preliminary phytoconstituents screening of the extracts showed the presence of glycoside, flavonoids, tannins, saponins. Thus further work can be carried out on the isolation. In addition these results confirmed the evidence in previous studies which reported that methanol is a better solvent for more consistent extraction of antimicrobial substances from medicinal plants compared to other solvents 14,15,16.

References
7. Sethi PD. HPTLC Quantitative Analysis of Pharmaceutical Formulations, 1st ed.
 CBS Publishers and Distributors, New Deli. 1996. p.3-73
Author Information

P. Muthumani, M.Pharm
Department of Pharmaceutical Chemistry, K.M. College of Pharmacy

P. DEVI, M.Pharm (Ph.D)
Department of Pharmacognosy, K.M College of Pharmacy

R. MEERA, M.Pharm
Department of Pharmaceutical Chemistry, K.M. College of Pharmacy

B. KAMESWARI, M.Sc, M.Phil
Department of Biochemistry, K.M. College of Pharmacy

B. ESWARAPRIYA, M.Sc, M.Phil
Department of Biotechnology, St. Michael College of Engineering