Reliability of Cycloplegic Autorefractor Measurements to determine Spherical and Astigmatic Refractive Errors in Young Children

S Pedamallu, K Reddy, R Pedamallu, C Pedamallu

Citation

Abstract
Background: This paper mainly focuses on the reliability study of cycloplegic autorefractor measurements over other methods in young children.

Material and Method
In a prospective study, 200 school children aged 8 to 15 years were evaluated for refractive errors in a period of one year. Non-cycloplegic autorefraction, followed by cycloplegic conventional retinoscopy and cycloplegic autorefraction was performed. Cyclopentolate eye drops(1 %) are used for this purpose. Fundus examination was performed in all children to exclude any posterior segment pathology. Post-mydriatic assessment was performed after one week.

Results
Post-mydriatic test values are used as gold standard. There is a no significant difference between cycloplegic autorefractor spherical power, cylindrical power and axis measurements against Post mydriatic test values. The difference is statistically significant in case of non-cycloplegic autorefraction.

Conclusion
Autorefraction with cycloplegia can be substituted for the conventional cycloplegic retinoscopy for both spherical and astigmatic refractive errors in young children.

Note: This study was conducted by first author at Department of Ophthalmology, Rangaraya Medical College, Kakinada, India in the year 2002-2003.

INTRODUCTION
Conventional cycloplegic retinoscopy is widely used method to determine the refractive errors in patients of all age groups. Ophthalmologists and opticians in India are increasingly using Non-cycloplegic autorefractor measurements to determine refractive errors in patients of all age groups. Their reliability is questionable especially in young children.

The present study is an attempt to determine the reliability of cycloplegic automated refractor measurements as an effective substitute for conventional cycloplegic retinoscopy
Reliability of Cycloplegic Autorefractor Measurements to determine Spherical and Astigmatic Refractive Errors in Young Children

drop of administration. After adequate papillary dilatation (6 mm or more), cycloplegic conventional retinoscopy followed by cycloplegic autorefraction was performed.

RETINOSCOPY
Conventional retinoscopy was performed with the help of streak retinoscope to determine both spherical and cylindrical measurements.

AUTOMATED REFRACTION
Canon Autorefractor R-50m was used in the study. This instrument has automatic mode (5 readings) and +/- 0.25D increments.

PROCEDURE
The child is comfortably seated in front of the Autorefractor. Instrument is adjusted so that the pupil is concentric with the inner alignment. The operation lever is fine adjusted until a clear bright dot appears in the centre of the inner alignment.

When the bright dot is clearest in the centre alignment ring and eye is in proper focus, measurement starts automatically. After measurements are made, the standard value will be automatically calculated and displayed within brackets. The measurement in the other eye was done in the similar way. After both eyes are measured, the results were printed automatically. Autorefractor readings were taken before and after cycloplegia.

FUNDUS EXAMINATION
Fundus examination with direct ophthalmoscope was performed in all children to exclude any posterior segment Pathology.

POST-MYDRIATIC TEST
After recording visual acuity in both eyes, post-mydriatic test was performed. Different spherical and cylindrical combinations were used based on retinoscopy values, to provide best possible visual acuity in both eyes separately. Finally, pinhole test is performed with these glasses on. If there is improvement in visual acuity, the whole process is repeated for best possible visual acuity. The final spherical and cylindrical values are recorded. These post-mydriatic test values are taken as gold standard.

The Data was inputted into excel sheet and analysed. The spherical and astigmatic measurements obtained by non-cycloplegic autorefraction, cycloplegic autorefraction and cycloplegic retinoscopy are compared with values of post-mydriatic test.

RESULTS
We used Chi test to test the level of significance. Post-mydriatic test values were taken as gold standard and compared with that of cycloplegic autorefraction measurements, non-cycloplegic autorefraction measurements and conventional cycloplegic retinoscopy.

Figure 2
Table 1: Percentage of measurements in 400 eyes of spherical power by two methods that agree

<table>
<thead>
<tr>
<th>Measurements</th>
<th>± 0.25D</th>
<th>± 0.50D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloplegic auto refraction v Post</td>
<td>70%</td>
<td>97%</td>
</tr>
<tr>
<td>Mydriatic Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycloplegic retinoscopy v Post</td>
<td>93%</td>
<td>98%</td>
</tr>
<tr>
<td>Mydriatic Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Cycloplegic auto refraction v</td>
<td>52%</td>
<td>70%</td>
</tr>
<tr>
<td>Post-Mydriatic Test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In our study 70% of cycloplegic autorefraction spherical measurements agreed within ± 0.25 D of post-mydriatic test values and 97% agreed within ±0.50D

93% of Cycloplegic retinoscopy spherical power measurements agreed within ± 0.25 D of post-mydriatic test values and 98% agreed within ±0.50 D.

52% of non-cycloplegic autorefraction spherical power measurements agreed within ± 0.25 D of post-mydriatic test values and 70% within ±0.50 D.

There is a significant difference between cycloplegic autorefractor spherical power measurements and
Cycloplegic retinoscopy values with in the range of ±0.25D (P<0.001), but not with in the range of ±0.50D (P= 0.8398).

There is a significant difference between non-cycloplegic autorefractor spherical power measurements and Cycloplegic retinoscopy values with in the range of ±0.25D (P<0.001) and also with in the range of ±0.50D (P<0.001).

Figure 3
Table 2: Percentage of measurements in 400 eyes of cylindrical power by two methods that agree

<table>
<thead>
<tr>
<th>Measurements</th>
<th>± 0.25D (%)</th>
<th>± 0.50D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloplegic auto refraction versus Post-Mydriatic Test</td>
<td>97% (387 eyes)</td>
<td>99% (384 eyes)</td>
</tr>
<tr>
<td>Cycloplegic retinoscopy versus Post-Mydriatic Test</td>
<td>98% (389 eyes)</td>
<td>99% (389 eyes)</td>
</tr>
<tr>
<td>Non-Cycloplegic auto refraction versus Post-Mydriatic Test</td>
<td>85% (331 eyes)</td>
<td>89% (335 eyes)</td>
</tr>
</tbody>
</table>

In our study 95% of cycloplegic autorefraction cylindrical power measurements agreed within ±0.25 D of post-mydriatic test values and 98% within ± 0.50 D.

96% of cycloplegic retinoscopy cylindrical power measurements agreed within ±0.25 D of post-mydriatic test values and 99% within ±0.50D

85% of non-cycloplegic autorefraction cylindrical power measurements agreed within ±0.25 D of post-mydriatic test values and 89% within ±0.50 D.

There is no significant difference between cycloplegic autorefractor cylindrical power measurements and Cycloplegic retinoscopy values with in the range of ±0.25D (P=0.838) and also with in the range of ±0.50D (P=0.801).

There is a significant difference between non-Cycloplegic autorefractor cylindrical power measurements and Cycloplegic retinoscopy values with in the range of ±0.25D (P=0.02) and also with in the range of ±0.50D (P=0.04).

Figure 4
Table 3: Percentage of measurements in 400 eyes of cylindrical axis by two methods that agree

<table>
<thead>
<tr>
<th>Measurements</th>
<th>≤ 10° (%)</th>
<th>11° to 20° (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloplegic auto refraction versus Post-Mydriatic Test</td>
<td>95% (387 eyes)</td>
<td>90% (384 eyes)</td>
</tr>
<tr>
<td>Cycloplegic retinoscopy versus Post-Mydriatic Test</td>
<td>75% (321 eyes)</td>
<td>83% (328 eyes)</td>
</tr>
<tr>
<td>Non-Cycloplegic auto refraction versus Post-Mydriatic Test</td>
<td>75% (331 eyes)</td>
<td>89% (335 eyes)</td>
</tr>
</tbody>
</table>

In our study 95% of cycloplegic autorefraction cylindrical axis measurements agreed within ≤ 10° of post-mydriatic test values and within 20° in 98% of eyes.

73% of cycloplegic retinoscopy cylindrical axis measurements agreed within ≤ 10° of post-mydriatic test values and within 20° in 91% of eyes.

75% of non-cycloplegic autorefraction cylindrical axis measurements agreed within ≤ 10° of post-mydriatic test values and within 20° in 89% of eyes.

There is a significant difference between cycloplegic autorefractor cylindrical axis measurements and Cycloplegic retinoscopy values with in the range of ≤ 10° (P<0.001) and also with in the range of 11° to 20° (P =0.033).

There is a significant difference between non-cycloplegic autorefractor cylindrical axis measurements and post-mydriatic test values with in the range of ≤ 10° (P =0.639) and also with in the range of 11° to 20° (P =0.831).

DISCUSSION

There is remarkable agreement between Cycloplegic autorefractor spherical power measurements and Cycloplegic retinoscopy with in the range of ±0.50D is comparable.

Non-cycloplegic autorefractor spherical power measurements and Cycloplegic retinoscopy with in the range of ±0.50D are not comparable.

There is remarkable agreement between Cycloplegic autorefractor cylindrical power measurements and Cycloplegic retinoscopy with in the range of ±0.25D is comparable.

Out of the all the methods used, cycloplegic autorefractor cylindrical axis measurements is the best. It is even better
Reliability of Cycloplegic Autorefractor Measurements to determine Spherical and Astigmatic Refractive Errors in Young Children

than cycloplegic retinoscopy with in the range of ≤ 20°.

Non-cycloplegic autorefractor cylindrical axis measurements also can be comparable with cycloplegic retinoscopy values.

There are a few published studies concluding that the most reliable measure of spherical and astigmatic refractive error was cycloplegic autorefraction followed by non-cycloplegic autorefraction and cycloplegic subjective refraction.

CONCLUSION

Cycloplegic autorefraction spherical and cylindrical measurements can be substituted for conventional cycloplegic retinoscopy in young children. It is even better than conventional cycloplegic retinoscopy for cylindrical axis measurements.

The least reliable measure was non-cycloplegic autorefraction. Despite the cost of equipment, autorefraction with cycloplegia can be comparable to conventional cycloplegic retinoscopy in accuracy in children, can be run by an ophthalmic technician and therefore eliminates the ophthalmologist’s examination time required for retinoscopy. Autorefraction without cycloplegia cannot substitute for the conventional cycloplegic retinoscopy in young children.

CORRESPONDENCE TO

Dr. Srinivas B. Pedamallu, 7, Dryclough Close, Halifax, HX30LF, England Email: pbs6vas@yahoo.com

References

Reliability of Cycloplegic Autorefractor Measurements to determine Spherical and Astigmatic Refractive Errors in Young Children

Author Information

Srinivas B. Pedamallu, M.S, MRCSEd
Huddersfield Royal Infirmary

K. Sudhakar Reddy, M.D.
Professor and Head, Department of Ophthalmology, Rangaraya medical college

Raghuveer Pedamallu, M.S.
Department of Surgery, KMC medical college

Chandra Sekhar Pedamallu, Ph.D.
Post Doctoral Scientist, New England Biolabs Inc.