Hepatitis B Surface Antigen In Human Immuno Deficiency Virus Positive Patients In Bida, North Central Nigeria.

O Omosigho, S Mohammed, H Inyinbor, G Emumwen, S Ogedengbe, I Okorie, J Njab, A Dangana, O Oladejo, E Emumwen

INTRODUCTION

Human immuno deficiency virus (HIV) and Hepatitis B viruses (HBV and HCV) are the three most common chronic viral infection documented worldwide (Soriano et al., 2006). HIV reportedly accounted for 38.6 million infections worldwide at the end of 2005 (Report on the global AIDS epidemic, 2006). HBV has been reported to be responsible for 400 million chronic infection (Alter, 2006). Moreover among the HIV infected patients, 2.4 million are estimated to have chronic HBV co-infection (Bonacini et al., 2004). In patients already infected with HIV and either hepatitis B or C, the prognosis is made much worse with additional infection by other hepatotropic viruses (Bonacini et al., 2004). Hepatitis B is a serious public health problem worldwide and one of the most common infectious disease globally (McQuillan et al., 1989).

The viruses have similar route of transmission, namely through blood and blood products, sharing of needles to inject drugs and sexual activity, making co-infection with these viruses a common event (McNair et al., 1992). Many HIV positive individual have also been exposed to hepatitis virus (HBV). Studies suggested that as many as 70% - 90% HIV positive people have evidence of past or current HBV infection (Lipiroth et al., 2007). Co-infection with HBV increases the risk for hepatotoxicity of HAART and likelihood of onset of an AIDS-defining illness, compared with infection HIV-1 alone (Greub, 2006). HBV co-infection in HIV positive individuals is of utmost importance because of the underlying hepatic complications, which have been shown to decrease the life expectancy in HIV infected patients (Chung, 2006). Nigeria has been grouped among countries highly endemic for viral hepatitis (Odemuyiwa et al., 2001).

This study was therefore designed to estimate the prevalence of HBV seropositivity in patients living with HIV/AIDS in Bida –Niger State, North Central Nigeria.

MATERIALS AND METHODS

A prospective Cross sectional and analytical study was carried out at the Federal Medical Centre Bida. Only confirmed HIV positive serum samples were included in this study. Two hundred and fifty (250) samples were recalled randomly from a pool of confirmed HIV positive samples.
stored at -24°C until analysis. The samples were collected between January 2009-July 2010 from HIV seropositive patients who attended HAART clinic for follow-up and other health needs. Rapid chromatogenic Enzyme Immuno Assay (EIA) kits was used for the detection of Hepatitis B surface antigen (HBsAg) in the serum following the manufacturers instruction (Acumen Diagnostics Inc, USA). Hepatitis B positive samples were confirmed with a second serum based EIA rapid test (PMC Medical Pvt. Ltd, India). The EIA rapid test kit used had sensitivity of 99% and 99.0% specificity respectively and a positive predictive value of 99.9%.

Data were captured and analyzed on Epi info version 3.5.1 August 13th, 2008 at P=0.05.

RESULTS

Table 1 shows the age and sex related distribution of study participants. Of the 250 participants, 118 (47.2%) were males and 132 (52.8%) females. The age interval most represented was 21-30 years with 100 (40%) participants, followed by the interval of 31-40 years with 73 (29.2%) participants, then the interval of 41-50 years with 38 (15.2%). The interval of less than 20 years had 28 (11.2%) participants, while 9 (3.6%) participants were found in the interval of 51-60 years. Only 2 (0.8%) were seen to be above 60 years.

Table 2 shows that 33 (13.2%) was positive for Hepatitis B Surface antigen. The prevalence of Hepatitis B surface antigen was higher among the females 23 (17.6%) than males 10 (8.4%). Statistical analysis showed significant difference (p>0.05).

Age related prevalence of Hepatitis B surface antigen in HIV infected patients was assessed and results showed that subjects of age group 21-30 years had the highest prevalence 18 (36.5%). This was followed by age group 31-40 years 7 (18.9%), 41-50 years 4 (20.7%) and <20 years 3 (13.3%) respectively. No significant difference was observed in association between age and prevalence of Hepatitis B Surface antigen (p<0.05) (Table 3).

DISCUSSION

The aim of this study was to estimate the prevalence of HIV and HBV co-infections in the study population with the understanding that Chronic viral hepatitis is a leading cause of liver related death among patients with HIV/AIDS worldwide (Seeley et al 2004). Co-infection prevalences above 10% have generally been considered a threat to
HIV/AIDS patients (Waber et al 2006). Our results have revealed that HIV/HBV co-infection prevalence was as high as 13.2%. in Bida.

The HIV/HBV co-infection rate in this study was found to be lower than the 25.9% reported by Uneke et al in Jos (Plateau State) and 27.8% reported by Forbi, et al. in Keffi (Nasarawa State) both located in the same geopolitical region with Bida. However, our result was observed to be slightly higher than the 11.9% obtained by Jesse et al. in Ibadan, south western Nigeria and much higher than 6% reported in Kano by Taura et al and 9% reported by Shannegam et al in India. Co-infection of hepatitis were more in female 23(17.6%) than male 10(8.4%) subjects. Statistical analysis showed significant difference ($p<0.05$). The high female prevalence of Hepatitis B surface antigen in this study is in agreement with the findings of Jesse et al in Ibadan. This study therefore revealed the endemicity of HBV Infection and increased infection in HIV infected individuals in Bida North central Nigeria. Therefore, routine screening for hepatitis B surface antigen among people living with HIV is advocated.

References

Lymphocyte levels in highly HIV infected population of North-Central Nigeria. Mem Inst Oswaldo Cruz, Rio de Janeiro, vol. 102(4).
Author Information

O.P. Omosigho
Medical Microbiology Department, Federal Medical Centre Bida

S.K. Mohammed
Medical Microbiology Department, Federal Medical Centre Bida

H.E. Inyinbor
Medical Microbiology Department, Federal Medical Centre Bida

G.E. Emumwen
Medical Microbiology Department, Federal Medical Centre Bida

S.O. Ogedengbe
Medical Microbiology Department, Federal Medical Centre Bida

I.E. Okorie
Medical Microbiology Department, Federal Medical Centre Bida

J.E. Njab
Programme & Research Division, Afican Health Project

A. Dangana
Haematology Department, Federal Medical Centre Bida

O.P. Oladejo
Chemical Pathology Department, Federal Medical Centre Bida

E.F. Emumwen
Dept. Of Science Laboratory Technology, Federal Polytechnic Bida