Subdural Hematoma In Childhood: Considerations About Twenty Cases And Review Of The Literature
C Pereira, J Monterio, E Santos, L Dias

Citation

Abstract
Background: Subdural hematoma is defined as blood collection between dura mater and arachnoid spaces due to trauma, infectious diseases or bleeding disorders. In infancy, subdural hematoma is a clinical syndrome which, although relatively constant in its overall features, is often unrecognized and its diagnosis is late. The subdural hematoma in childhood is more commonly seen in the child of the three weeks old or more. Clinical features depend on patient's age, the hematoma's site and its length. Computed tomography and magnetic resonance are the best methods.

Aim: 1) identify the sex, age, causes and computed tomography findings in patients with subdural hematoma; 2) to analyse the results of the treatment.

Material and Methods: This study is retrospective. Twenty children under fifteen years old were studied at João Alves Filho Hospital (Aracaju - Sergipe - Brazil). The period was 1995, may to 2004, june.

Results: Twelve (60%) children were male and eight (40%) female. Children's age range from two days to fourteen years old. The most common causes were fall, car collision, hit by a car, traumatic delivery and fight. Computed tomography was important for diagnosis and treatment. The clinical treatment was done in thirteen patients. There were fifteen (67%) patients that had good recovery and five (33%) died.

Conclusion: 1) the male children were more affected; 2) the principal age was 6 to 12 years-old; 3) the most common cause was fall; 4) the main localization in computed tomography was parieto-temporal and 5) 67% of the patients survived.

INTRODUCTION
The subdural hematoma (SDH) is an entity defined as a clot between the dura-mater and arachnoid space due to trauma, infectious diseases (empyema, meningitis) or coagulopathy. In infancy, represents a clinical syndrome relatively constant with little identification.

The SDH is not common in children with head injury, exception the children with delivery trauma or non-accidental trauma as “WHIPLASH SHAKING INJURY”.24-34

The SDH are usually classified as acute (until 03 days after the trauma), subacute (between 03 days and 06 weeks) and chronics (more than 06 weeks).22-24 33-47 CHOUX et al 34 suggested that the acute SDH occur until 48 hours after the head trauma, the subacute between the third day and the third week and the chronicle after the third week.

The acute SDH is usually associated with shock and brain contusion or severe brain damage, progressing to brain swelling and necrosis. In the other hand, the chronicle SDH, described as a complication of the acute SDH, is later, with few sings and symptoms. The principal etiology of the chronicle SDH is the light trauma.61

The SDH in childhood are more common in children with more than three week of life. The more frequents are the subacute and the chronicle.25 These SDH present, on the whole, symptoms that are not characteristics.

Neuroimage exams show very utility to diagnostic the SDH. The X-ray of skull reveal fractures and diathesis of sutures. However, the most important exams are computerized tomography (CT) and magnetic resonance (MR).
The aim of this study is to describe twenty cases of SDH in childhood and discuss the diagnosis, physiopathology, treatment and prognosis.

PATIENTS AND METHODS
Had been studied, retrospectively, 20 children with SDH admitted at João Alves Filho Hospital (Aracaju – Sergipe – Brazil), and the period was 1995, May to 2004, June. This study was approved by the Ethical Committee of the Hospital, and a written informed consent was obtained from each patient. Were studied the sex, age, etiology, neuroimage findings (X-ray an CT), treatment and prognosis. The results are descriptive.

RESULTS
The male children were more affected (60%). The age ranged from two days to fourteen years old. The etiologies were fall in nine cases (45%), car accident in four cases (20%), trampling in three cases (15%), delivery trauma in three cases (15%) and aggression in one case (05%). The CT was the principal method to diagnosis. Was possible to diagnostic the stage, localization and extension of the SDH by CT in all cases.

The main localization of the SDH was parieto-temporal. The treatment of the SDH depends on the size and localization of the SDH. Over and above that, the clinical and neuroimage findings are precious to define the correct management of these patients. The conservative treatment (65%) was more done than surgery (35%). Analyzing the prognosis, fifteen patients survived (75%) and five died (25%). These results are resumed in table 1.

DISCUSSION
SDH is a pathological entity defined as a sanguineous collection located between the dura-máter and arachnoid, due to infectious diseases, trauma, and coagulopathy. In infancy, it represents a clinical syndrome that, even so relatively constant, is generally not identified, being many times diagnosed delayed. In the clinical practice, some times is difficult to differentiate the SDH caused for accident or abuse, probably due to the lack of technological resources and of the ignorance of this clinical entity for the doctor.

The head injury in any age is more common in the male children. In our patients, it had predominance of the male, twelve cases (60%) and eight of the female (40%), and this fact had been observed for other authors.

The SDH has multiple etiology. The post-traumatic SDH, due to fall of surface mainly raised, are the most frequent in infancy, being majority of them diagnosed when the trauma history is disregarded, forgotten or unknown. In new-born (NB) the SDH is uncommon, being, in the majority of the times, related to delivery-trauma, prematurity, fetal presentation, untimely obstetrics maneuvers. The clinical manifestations are multiform, and the child be able without symptom or to evolve for the death. When without symptom, the SDH disappears spontaneously or evolves to the chronic state that can be reflected of a nutrition state compromised of the child and a precarious physical and mental development.

About 14% of the NB with serious trauma of childbirth died in the first week of life mainly which had to the SDH. However, with the improvement of the assistance in nurseries and the use of transfontanel ultrasound, it has the precocious recognition and frequent of the intracranial bleeds, in way to improve the prognostic significantly. The clinical diagnosis of SDH in the NB, after the difficult childbirth, must be suspected when it will have low activity, convulsive crises, motor deficits, pupillary alterations, ocular shunting lines and tumefaction of fontanels. Retinal hemorrhages are gifts in up to 30-50% of the cases. Some times, the initial symptoms are apparently light in the first 16-72 hours.

The SDH for not accidental trauma summarize the term infantile abuse, originally described by TARDIEU in 1886, and that currently they include the abandonment, recklessness, sexual, emotional or physical abuse (strangulation, shaken the child, to shoot it against the wall or the window and shot). It is difficult to quantify the frequency of the not accidental traumas in infancy, a time that depends on an adequate monitoring and of minute physical examination for the diagnosis of child abuse. The SMITHS and HANSON had found 134 cases of child abuse, where 50 (35%) had non-accidental trauma, of which 32 (64%) had SDH. This type of SDH wide affects the lesser children of three years old, and the neurological findings are not specific and can not suggest the child abuse.

The shaken baby syndrome (SBC) is the typical injury of the child abuse. The complete clinical picture was described by Caffey and GUTHKELCH.
understanding: SDH, brain swelling, hemorrhagic retinopathy, breaking of ribs. Its classic picture occurs without any skull breaking, wound in scalp, edema or direct evidence of trauma. However, these last findings can be gifts in case that history of head trauma against surface. To cause the injury in whip, the required force must be enough to surpass the force of the cervical muscles and to allow the head into front and back. Had been described that the repeated events can cause a cumulative effect. Of this form, the SBC is more commonly observed around the fifth month of age, when the child has the head relatively wider than the body, the muscles of the neck are weaker, with small control of the head. The measure that the child grows, has increase of the corporeal weight in relation to the head and the muscles of the neck becomes stronger; in this way, the head moves with the body as an only block. The increase of the corporeal weight implies greater force to put into motion the child. The SDH, in this way, are rarer in bigger children of two years.

Other causes of non-traumatic SDH in infancy are associates to the anticoagulating therapy, rupture of aneurysm of callosomarginal artery and ventricle-peritoneal derivation. The coagulopathy must be thought always associates to the traumatic, since such exist many similarities between the injuries as ecchymosis in different periods of evolution. This was boarded by O’HARE et al. that had observed, for a period of two years, fifty children with suspicion of accidental skull injuries, of which 16% had presented concomitant coagulopathy to the wounds. The association between coagulopathy and child abuse is not uncommon and, for in such a way, is important.

1. To investigate behaviors and abnormal attitudes of the parents, antecedents, factors of stress, financial or marriage problems, use of alcohol, whose unsatisfied acts are unloaded in the children as child abuse;

2. To evaluated the possible and impossible cause for the injury of the child and physical characteristics of the injury.

To diagnosis the coagulopathy, beyond the history of familiar antecedents, bleed for minimum traumas, use of medication that intervenes with the coagulation, must be carried through by coagulation tests.

The chronic SDH in infancy generally is a complication of the acute form, when this is not treated adequately, and the main causes are intracranial hemorrhage in the perinatal period, delivery trauma, child abuse, post meningitis, coagulopathies including leukemia, haemophilia and vitamin K deficiency. This last disease is very rare, having been described in literature only 16 cases, being mortality very high. Other circumstances that can result in SDH of secondary bleed the low vitamin K concentrations are the diahrea, antibiotics, syndrome of cystic, deficiency of ?-1-antitripsina, and others. The causes most frequent of SDH in this study had been accidental fall in nine cases (45%), automobile accidents in four cases (20%), trampling in three cases (15%), delivery trauma in three cases (15%) and physical aggression in one case (5%).

Although the head injury history can help the diagnosis, it is not frequent to get a clear description of had really happened. However, with the clinical signs, the SDH possibility must be suspected, same in the absence of trauma. Some children with acute SDH for physical abuse not submitted to adjusted evaluations, probably due to lack of technological resources and of the ignorance of this clinical entity for the doctor.

The inquiry must include a multidiscipline team, neuro- ophthalmologic examination, neuroimage exams as x-ray of skull, CT scan, MR and, on NB, transfontanel ultrasound. Some authors based on the CT findings, decide the adjusted treatment.

The skull CT is the examination of choice for the diagnosis of SDH, having as advantages rapidity, trustworthiness for the diagnosis and identification of injuries associates and complications. The possibility of osseous evaluation through appropriate windows, together with the capacity to visualize the blood in acute state is the main factors that concur for its efficiency on the other examinations of image. The SDH and brain edema are frequently situated in the cerebral convexity, mainly on the form of swelling of the ipsilateral hemisphere. About 75-90% are supratentorials and 10% are infratentorials. In non-accidental trauma, the preferential localization is in posterior fossa, parieto-occipital region and interhemispheric, considered areas of neurological emergency in NB. How much to the distribution of the SDH in this study, the parieto-temporal region was more
frequently reached, followed of the fronto-parietal, parietal
region and finally fossa posterior.46

The treatment of the SDH in infancy depends on
the extension and localization of the hematoma, in such way that
the clinical evolution and the studies of image are basic to
define a therapeutical behavior to be instituted. The specific
treatment of the acute SDH, had been emphasized the
importance of the precocious draining for the removal of
hematoma.47, 35, 58 Associated to the specific treatment that
aims to diminish the intracranial pressure, must even though
be kept general good condition of the child through
conservatives measures.51 In the SDH due to coagulopathy is
very important the prophylactic treatment, that involves the
routine administration of 01 mg of vitamin K, after
delivery.48 The surgical treatment consists of the draining
way suture.49, 47-48 Had been considered for the chronic
SDH, procedures less invasive than to control the
intracranial pressure, as the subdural punction, subdural
draining.49, 47-48 The repeated subdural punction are important
in the treatment of SDH due to meningitis or repeated
traumas. The conservative treatment was carried through in
thirteen cases (65%) and the surgical treatment in seven
(35%) cases. The fast diagnosis for the CT scan, followed by
the surgical draining of the hematoma is essential conditions
for a good prognostic.48, 47, 47, 51, 52, 61, 66 In this study, fifteen
patients had discharged and five died.

CONCLUSIONS
These data suggest that:

1. The male children were more affected;
2. The main age was between six and twelve years
 old;
3. The most common cause was the fall;
4. The main localization of the SDH was parieto-
 temporal;
5. 67% of the patients survived.

CORRESPONDENCE TO
Dr. Carlos Umberto Pereira, M.D., PhD. Av. Augusto
Maynard, 245/404 49015-380 Aracaju – Sergipe – Brazil. e-
mail: umberto@infonet.com.br

References
1. Aicardi J, Goutieres F, Hodebour Verbois A. Multicystic
 encephalomalacia of infants and its relation to abnormal
 gestation and hydranencephaly. J Neurol Sci 15:357-373,
 1972.
 Serial abuse in children who are shaken. Am J Dis Child
3. Allen KW, Ogden B, Bentley FL, Jung AL. Fetal
 hydantoin syndrome, neuroblastoma and hemharragic
4. Alteimer WA, O’connor S, Vietze PM, Howard MS,
 Sherrod KB. Antecedents of child abuse. J Pediatr
5. Alvarez-garijo JA, Gomila DT, Aytesca P, Menguall MA,
 Marin AA. Subdural hematomas in neonates. Surgical
6. Aoki N, Masuzawa H. Infantile chronic subdural
 hematoma. Etiologic significance of infantile subdural
8. Aoki N, Mizutani H, Masuzawa H. Unilateral subdural-
 peritoneal shunting for bilateral chronic subdural hematomas
 1985.
9. Aoki N, Masuzawa H. Subdural hematomas in abused
 children: report of six cases from Japan. Neurosurgery
10. Aoki N, Masuzawa H. Bilateral chronic subdural
 hematomas without communications between hematomas
cavities: treatment with unilateral subdural-paritonal shunt.
11. Aoki N. Chronic subdural hematoma in infancy -
 Clinical analysis of 30 cases in the CT era. J Neurosurg
12. Billmore ME, Dyers PA. Serious head injury in infants:
13. Bleyer WA, Hakami N, Shepard TH. The development of
 the hemoastasis and in the human fetus and newboNB
14. Bleyer WA, Skinner AL. Fetal neonatal hemorrhage
 after mateNBal anticonvulsivant therapy. JAMA
16. Brill CB, Jarah V, Black P. Occipital interhemispheric
 acute subdural hematoma treated by lambda suture tap.
17. Brown JK, Minns RA. Non-accidental head injury with
 particular reference to whiplash shaking injury and medico-
18. Bruce DA, Schut L, Sutton LN. Pediatric head injury. In:
 Wilkins RH, Rengachary SS. Neurosurgery. (ed) McGraw-
19. Caballero FN, Buchanan GR. Abetaliproproteinemia
 presenting as severe vitamin K deficiency. Pediatrics
20. Caffey J. Multiple fractures of long bones of children
 suffering from subdural haematomas. Am J Roentgenol
 Its potential residual effects of permanent brain damage and
22. Caffey J. The whiplash shaken infant syndrome.
 In: Raimondi AJ, Choux M, Di Rocco C. Head injuries in
 the newboNB and infancy. Principles of Pediatric

Author Information

Carlos Umberto Pereira
Department of Medicine, Division of Neurosurgery, João Alves Filho Hospital, Federal University of Sergipe

João Tiago Silva Monterio
Department of Medicine, Division of Neurosurgery, João Alves Filho Hospital, Federal University of Sergipe

Egmond Alves Silva Santos
Department of Medicine, Division of Neurosurgery, João Alves Filho Hospital, Federal University of Sergipe

Luiz Antônio Araújo Dias
Division of Neurosurgery, Santa Casa de Ribeirão Preto