Case of the Month - Case 3/2000
M Joseph, J Nates

Citation

Abstract

CASE STUDY
This is a critically ill 24 year-old female patient, requiring a pulmonary artery (PA) catheter for hemodynamic management. Below are the 3 consecutive chest X rays, the first after a routine insertion of the PA catheter.

Figure 1

Figure 2

X-Ray 1

X-Ray 2
Question 1: What is your diagnosis?
A: The patient has developed a hemothorax due to rupture of the pulmonary artery, caused by the PA catheter. Other potential complications due to use of a PA catheter include pneumothorax, arrhythmias, pulmonary infarction, sepsis and endocarditis, balloon rupture and subclavian artery injury.

Question 2: What is the incidence of this pathology?
A: Proposed risk factors include age over 60 years, pulmonary hypertension, improper balloon inflation, improper catheter positioning, cardiopulmonary bypass and anticoagulation. Proposed postulated mechanisms include distal tip migration penetrating the wall during balloon deflation, overdistention of the balloon with fluid, and traction on an inflated, wedged balloon.

Question 3: What are the risk factors?
A: Proposed risk factors include age over 60 years, pulmonary hypertension, improper balloon inflation, improper catheter positioning, cardiopulmonary bypass and anticoagulation. Proposed postulated mechanisms include distal tip migration penetrating the wall during balloon deflation, overdistention of the balloon with fluid, and traction on an inflated, wedged balloon.

Question 4: What is the known mortality rate?
A: Thoracotomy appears to improve survival (50%) in patients who develop a hemothorax, whereas conservative treatment in these patients is not successful. Patients who do not develop a hemothorax have a 25% mortality rate.

Question 5: What would be your treatment options?
A: Nonsurgical options include flexible bronchoscopy and Fogarty catheter tamponade, applying high PEEP, and conservative treatment, all of which are recommended in patients without a hemothorax. Double lumen intubation to protect the noninvolved lung has also been recommended.

Surgical options require a thoracotomy with arterial repair, pneumonectomy, or lobectomy.

References
Author Information

Mathew Joseph, M.Ch.
Assistant Professor, Departments of Neurosurgery, The University of Texas-Houston, Health Science Center Medical School

Joseph L. Nates, M.D.
Assistant Professor, Departments of Neurosurgery and Anesthesia-Critical Care Medicine, The University of Texas-Houston, Health Science Center Medical School