A patient complaining of hoarseness with an aneurysm of the aortic arch (Ortner’s syndrome) and a left intrathoracic goiter

L Llerena, Y Marcos-Gutiérrez, V Mendoza-Rodríguez, E Olivares-Aquiles

INTRODUCTION

The recurrent laryngeal nerve supplies almost all the muscles acting on the left vocal cord. The left vagus nerve descends into the superior mediastinum between the left common carotid and subclavian arteries. At the level of the aortic arch it gives rise to the left recurrent laryngeal nerve which course around the ligamentum arteriosum and ascends in the angle between the esophagus and trachea.

If the nerve is compressed and/or stretched by an expanding structure during its trajectory, a paralysis of the left-sided vocal cord may develop and patient manifest clinically as hoarseness.

Hoarseness due to left-sided vocal cord paralysis as a result of a cardiovascular disease was first described by Ortner in 1897. Ortner’s syndrome is also known as cardiovocal syndrome.

The Ortner’s or cardiovocal syndrome is not frequent and it is related to different anomalous cardiovascular structures as aneurysms of the aortic arch, aortic arch dissection, aneurysm of the ductus arteriosus, and dilatation of the left atrium.

Posterior intrathoracic goiters extending outside the thyroid bed are rare, making up 7% of all intrathoracic goiters. A small subset of them involving the left thyroid lobe may be found on the left mediastinal side compressing the trachea.

This type of goiter developing as downward extensions of the thyroid tissue is classified as secondary and also called substernal, particularly when more than 50% of the mass is below the suprasternal notch. In opposition, primary intrathoracic goiters also referred to as aberrant or ectopic goiters arise as a result of abnormal embryologic migration of thyroid anlagen associated with the aortic sac. Primary intrathoracic goiters are exceedingly rare.

CASE REPORT

A 51 years old man was operated 5 years previously of prostate cancer with good results and evolution. Now he complains of hoarseness in the last 3 years and since one week of atypical chest pain. At the beginning, a paralysis of the left recurrent laryngeal nerve which course around the ligamentum arteriosum and ascends in the angle between the esophagus and trachea was diagnosed and on a chest X-Ray film a mild widening of the left border of the mediastinum with slight displacement of the trachea to the right was detected, but at that time he refused other studies.

Now he comes to our Institute complaining of atypical chest pain since one week. Hoarseness and paralysis of the left vocal cord persists with same characteristics. Physical examination was unremarkable including urological system. On a new chest X-Ray, widening of mediastinum has mildly increased. The ECG and transthoracic Echo were also
unremarkable.

An enhanced chest multidetector computed tomography (64 slices Somatom Sensation, Forchheim Siemens) demonstrates an aneurysm of the aortic arch (6.5 x 7.14 x 10.15 cm) with compression of the main pulmonary artery and its branches. A transthoracic goiter (2.69 x 5.37 x 4.33 cm) originating in the neck and extending through the left, with mild compression and displacement of the trachea was also detected. The goiter slightly compresses the aneurysm (Fig 1). Patient refused intervention. He was advised about risks and symptomatic treatment indicated.

DISCUSSION

The cardiovocal syndrome of our patient is easily explained by the aortic arch aneurysm that occupies the space between the aortic arch and the main pulmonary artery and its branches compressing the anatomical structures in that space as the left recurrent laryngeal nerve. Contrast enhanced thoracic computed tomography also disclosed the presence of a left mediastinal mass extending from the thoracic outlet, merging from the left thyroid lobe. Mediastinal masses with these characteristics may also compress the trachea and the left recurrent nerve producing hoarseness by paralysis of the left vocal cord. Upper respiratory symptoms are also frequently present.

Usually the diagnosis of a thoracic goiter is not difficult because the attenuation value of the unenhanced thyroid tissue is higher than surrounding structures and the mass appears homogeneous, radiopaque, smooth contoured and frequently separated by fat planes from neighbors structures. In addition after contrast administration, goiter is early and prolonged enhanced.

The association of aortic aneurysms and secondary substernal goiters is very rare in the literature. In this patient two entities might contribute to produce the same symptom.

An embryologic explanation would be plausible in cases of primary goiters and aortic aneurysms due to the relation of thyroid anlagen and the aortic sac.

We conclude that the presence of an aneurysm of the aortic arch and a secondary goiter is an infrequent coincidence and both can explain the hoarseness of our patient.

CORRESPONDENCE TO

Prof. Luis Roberto Llerena. Instituto de Cardiología y Cirugía Cardiovascular. Calle 17 No. 702, El Vedado, Plaza, C. Habana, CUBA. 11400 Telephone: 8383845 e-mail: hemorx@infomed.sld.cu

References

4. Lydakis C, Thalassinos E, Apostolakis S, Athousakis E, Michou E, Kontopoulou E. Hoarseness as imminent
A patient complaining of hoarseness with an aneurysm of the aortic arch (Ortner’s syndrome) and a left intrathoracic goiter

A patient complaining of hoarseness with an aneurysm of the aortic arch (Ortner’s syndrome) and a left intrathoracic goiter

Author Information

Luis Roberto Llerena, MD, PhD
Consultant Professor of Radiology, Institute of Cardiology and Cardiovascular Surgery

Yamilé Marcos-Gutiérrez, MD
Radiologist, Institute of Cardiology and Cardiovascular Surgery

Vladimir Mendoza-Rodríguez, MD
Cardiologist, Institute of Cardiology and Cardiovascular Surgery

Eddy W. Olivares-Aquiles, MD
Cardiologist, Institute of Cardiology and Cardiovascular Surgery