Non-Invasive Tools for Improving Diagnosis of Non-Melanoma Skin Cancer: A Review
M Amjadi, B Coventry, J Greenwood AM

Abstract

Background Non-melanoma skin cancers (NMSC) are the most common cancers diagnosed in the western world. The need for surgical treatment of such lesions is on the increase. The fact that the majority of such lesions appear on aesthetically sensitive areas of head and neck means that a non-invasive method of diagnosis has the potential to both eliminate the need for tissue biopsy, as well as act as an adjunct to surgery to ensure minimal healthy tissue is sacrificed. Methods A review of all literature using databases of Pubmed and Medline was carried out. All the titles and abstracts of all articles found were searched and relevant articles were selected. A further review of all the references mentioned in the selected studies was carried out and all relevant articles were added to the database. All selected articles were reviewed and categorised into groups based on the technique or the technology being investigated. Results The minimally-invasive techniques currently under use or under investigation are: dermoscopy, high frequency ultrasound (HFUS), optical coherence tomography (OCT), and confocal microscopy including both fluorescence confocal scanning microscopy (FCSM) and reflectance confocal microscopy (RCM). Conclusions Based on this review RCM is the only device that has shown any promise in delivering a non-invasive real-time in vivo image of the skin and its structures that is comparable in resolution to histology, has reasonable inter-operator reliability, and therefore has the potential for use in conjunction to surgery. To date, trials in its use however have been limited.

INTRODUCTION

Non-melanoma skin cancers (NMSC) are the most common cancers diagnosed in the western world. The continuing rise in the incidence of NMSC will translate to greater need for surgical interventions. This paper has aimed to review the current literature regarding non-invasive methods of investigation of skin lesions. Non-invasive diagnostic tools have received increased attention for diagnosis, screening and management of NMSC. Several modalities are commercially available. Most of these devices are still limited to use in tertiary referral centres and research facilities.

The gold standard for diagnosis of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and solar keratosis (SK) is biopsy and histological examination. However, multiple lesions occur in areas of chronic sun damage, such that in the majority of cases lesions occur in the context of ‘field cancerisation’. Here, the diagnosis is often made clinically without confirmation by histology, since repeated and multiple biopsies may not be practical or feasible. Since skin biopsy alters the original skin morphology due to iatrogenic trauma, inflammation and scarring, non-invasive methods allowing in vivo study of the skin are of great advantage.

The development of topical treatment modalities including Imiquimod, diclofenac, salicylates, Hyaluronic acid, 5-Fluorouracil and ALA-photodynamic therapy, have changed the management of NMSC. Topical treatment of lesions often does not incorporate histological diagnosis. As topical treatments are only indicated for superficial and ‘low-risk’ lesions, with further development of these treatment modalities the need for non-invasive diagnostic methods will likely increase.

In the past ten to fifteen years, a number of non-invasive diagnostic tools have been developed and been investigated for their applicability for screening, diagnosis and management of skin cancer. These modalities allow the examination of large affected areas and offer the potential for non-invasive monitoring of topical treatment modalities in NMSC. Technologies vary considerably with regard to
their penetration depth, resolution and clinical applicability, and a number of studies have evaluated their diagnostic accuracy and sensitivity and specificity rates. While dermoscopy is widely used in the clinical setting, the application of others often remains limited to specialized cancer centres and research facilities.

A review of all literature using databases of Pubmed and Medline, searching for keywords of ‘noninvasive’ or ‘non-invasive’ or ‘minimally-invasive’, and ‘skin’ was carried out. All the titles and abstracts of articles found were searched and relevant articles were selected. A further review of all the references mentioned in the selected studies was carried out and all relevant articles were added to the database. All selected articles were reviewed and categorised into groups based on the technique or the technology being investigated.

DERMOSCOPY

Dermoscopy uses horizontal pattern analysis for diagnosis by inspecting the skin with a hand-held lens using cross polarized light. The magnification reached by dermoscopy ranges from 6 to 100 fold, depending on the device. Penetration depth reaches the level of the papillary dermis. It is used widely in dermatological practice for the differentiation of melanocytic lesions, and sensitivity and specificity rates of 73%–96% and 73–100% have been reported for detection of melanoma. With respect to NMSC, studies have focused on the differentiation of pigmented BCC and SK against melanoma whereby dermoscopy may aid in the differential diagnosis. Case reports have described dermoscopic features of facial non-pigmented SK and the dermoscopic differentiation of superficial BCC and SCC in situ. Dermoscopy adds another dimension to clinical diagnosis due to better magnification and its use can increase accurate diagnosis of lesions of most types by surgeons and other clinicians.

HIGH FREQUENCY ULTRASOUND

HFUS uses ultrasound of frequencies between 20–100 MHZ to evaluate skin morphology. Images are obtained in vertical sections with penetration and resolution varying with the respective frequencies. 20 MHZ ultrasound has a penetration depth of 3.8 mm with an axial resolution of 39 µm and a lateral resolution of 210 µm. Newer devices employing 100 MHz yield a resolution of 9.9 µm and 84 µm, yet have a decreased penetration of 1.1 mm. While routine ultrasonography is widely used clinically for evaluation of cutaneous, adipose, lymphatic, and deeper tissues, and has been used for preoperative assessment of skin tumours, HFUS has not yet been established for NMSC diagnosis outside investigational settings. Advantages of high frequency ultrasound include the deep penetration, whereby measurements of tumour thickness may be obtained on vertical images. However, the resolution does not reach the cellular level and histological subtypes of skin tumours may not be distinguished. Use of fine ultrasound probes through hollow bevel-tipped needles is currently being investigated experimentally.

OPTICAL COHERENCE TOMOGRAPHY

OCT is an imaging technique based on interferiometry. The principle is comparable to ultrasound, but instead of longitudinal ultrasound waves, infrared-light is used, yielding an axial and lateral resolution of approximately 15 µm and a penetration depth of 500–1000 µm. The images obtained by OCT are 2 dimensional, cross-sectional and have a lateral dimension of 4 to 6 mm. It has previously been shown that by using OCT the layers of the skin as well as adnexal structures and blood vessels can reliably be visualized. However, no cellular or subcellular details may be seen. The basement membrane cannot be distinguished, such that early tumour invasion cannot reliably be determined. Preliminary studies have described the features of NMSC, including BCC and SK and suggest that this technique may aid in the evaluation of NMSC. In a recent study OCT features in NMSC were identifiable, but SK and BCC could not be differentiated. OCT diagnosis was shown to be less accurate than clinical diagnosis, but high accuracy in distinguishing lesions from normal skin was obtained, crucial for delineating tumour borders.

FLUORESCENCE CONFOCAL SCANNING MICROSCOPY

Confocal microscopy is based on the detection of exogenous or endogenous contrast within the tissue. Both fluorescence and reflectance mode confocal laser microscopy have been evaluated for their clinical and investigational application in dermatology. The principle of FCSM is the excitation and detection of fluorophores by scanning conjugated horizontal planes within the tissue using a laser light source. Exogenous fluorophores are injected using a hypodermic syringe and image contrast is achieved by differential-distribution and accumulation in the intercellular and intracellular compartment. The commercially available FCSM (OptiScan Ltd., Melbourne, Australia) employs an Argon-ion Laser (488 nm) for tissue illumination and
excitation, while emitted fluorescence is used to visualize
the morphological details 21,22. FCSM images are oriented
horizontally with a lateral resolution of 0.5 to 1 µm and an
axial resolution of 3–5 µm, at 488 nm, the penetration depth
reaches 200 to 250 µm (level of the papillary dermis). FCSM
enables the visualization of cellular and sub-cellular
structures in vivo, with a resolution which is comparable to
routine histology sections. However, injection of
fluorescence dye is needed, which removes the technique
from the realm of ‘non-invasive’ category. Another
limitation relates to the innate instability associated with
handheld devices 16.

REFLECTANCE CONFOCAL MICROSCOPY

RCM is based on the reflectance, scattering and absorption
of monochromatic light by endogenous chromophores such
as melanin, haemoglobin and other cellular microstructures.
Images have a resolution at the cellular level comparable to
routine histology 17.

In the past decade, advances have been made in imaging
human skin by RCM in vivo. The main investigational
effort, however, lies in the evaluation of melanocytic lesions
and high sensitivity and specificity rates have been
described. Repeated imaging can be performed, and the
motion-artefacts of life imaging are overcome by stabilizing
the objective lens with an adhesive ring device on the skin
surface.

Of note is the disadvantage of studies that have used RCM in
diagnosis of NMSC. The most cited studies regarding the
use of RCM in diagnosis of BCC have been conducted by a
single group 18. These studies all appear to use a study
conducted in 2002, which had used 8 lesions in 5 patients, as
a sentinel study for creating the diagnostic criteria for BCC,
and measuring sensitivity and specificity levels, as the basis
of reference for all future studies of the group 20,21. This
introduces possible questions of bias in the integrity of such
studies, as well as issues regarding possible statistical power
of a study conducted on 5 patients. Studies that have been
performed outside of this group, which continue to use the
original group’s results as a point of reference, have never
been as extensive, or as clear in demonstrating the benefits
of RCM 22. Apart from the studies conducted by that group,
there is a lack of studies on the human skin performed by
means of RCM.

The main limitation of the RCM technique is the failure to
visualize the depth invasion of skin tumours due to its
relatively shallow penetration on horizontal sections and
inability to evaluate lesions with significant hyperkeratosis.
RCM therefore, does not permit an evaluation of the
basement membrane on horizontal sections, thus early
invasion of SK and progression to invasive SCC cannot be
determined. RCM may allow therapeutic monitoring of
patients with SK, where previously only clinical evaluation
was employed to assess efficacy with the potential to detect
sub-clinical or residual disease. Thus patients receiving non-
invasive therapy, e.g. patients with SK or BCC treated with
Imiquimod may be evaluated using RCM permitting a
systematic morphologic description of defined skin sites as
treatment progresses 23, although these studies have used the
criteria of BCC diagnosis that were developed by the same
group of researchers as mentioned above.

SUMMARY

Clearly, non-invasive methods of diagnosis on NMSC would
provide major clinical and economic benefits for surgeons
and the community and represent a significant step forward.
A number of non-invasive diagnostic methods are currently
being evaluated for their clinical applicability for NMSC
diagnosis. The obvious advantages of non-invasive
diagnostic tools are the lack of tissue processing or staining,
the possibility of examining tissue in its native state, thus
permitting repeated imaging or monitoring of selected skin
sites over time. While dermoscopy is routinely used for
evaluation of BCC, its role for SK may be limited to
pigmented SK due to its unspecific features. HFUS presently
remains an investigational device, requiring further clinical
studies to evaluate its applicability in skin tumour
management. OCT, while only used in specialized skin
cancer centres, appears to have the potential for clinical
applicability and evaluation of NMSC. For HFUS and OCT
comparable systematic studies are lacking, and future
investigations will have to determine their role in clinical
dermatology. While the use of non-invasive imaging devices
may aid in the diagnosis and management of NMSC, there
are several limitations. Both HFUS and OCT lack the
appropriate resolution. Further improvement of the described
technologies may overcome these problems in the future.
Our group and others are currently studying the potential
role of RCM in improving in vivo diagnosis and better
assessment of surgical margins for NMSC.

References

1. Love WE, Bernhard JD, Bordeaux JS. Topical imiquimod
or fluorouracil therapy for basal and squamous cell
carcinoma: a systematic review. Arch Dermatol 2009;
145(12):1431-8
12.
Author Information

Mahyar Amjadi, BMBS, BDS, FRACDS
Royal Adelaide Hospital

Brendon J Coventry, MBBS, PhD, FRACS
Royal Adelaide Hospital

John E Greenwood AM, MBChB, MD, FRACS
Royal Adelaide Hospital